DISCONTINUOUS AND COUPLED
CONTINUOUS/DISCONTINUOUS GALERKIN METHODS FOR
THE SHALLOW WATER EQUATIONS

CLINT DAWSON AND JENNIFER PROFT f

Abstract. We consider the approximation of a simplified model of the depth-averaged two di-
mensional shallow water equations by two approaches. In both approaches, a discontinuous Galerkin
(DG) method is used to approximate the continuity equation. In the first approach, a continu-
ous Galerkin method is used for the momentum equations. In the second approach a particular
DG method, the nonsymmetric interior penalty Galerkin method (NIPG), is used to approximate
momentum. A priori error estimates are derived and numerical results are presented for both ap-
proaches.
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1. Introduction. Simulation of flow in shallow water systems can serve nu-
merous purposes. Examples include modeling environmental effects of dredging and
commercial activities on fisheries and coastal wildlife, remediation of contaminated
bays and estuaries for the purposes of improving water quality, modeling the effects of
storm surges due to tropical storms and hurricanes, and studying freshwater-saltwater
interactions.

The shallow water equations model flow in domains whose characteristic wave
length in the horizontal is much larger than the water depth. Integrating the three-
dimensional mass and momentum equations over the depth, and applying the kinetic
boundary conditions at the free surface, one obtains the two dimensional depth-
integrated shallow water equations (SWE); see [35]. The SWE consist of a first
order hyperbolic continuity equation for the water elevation, coupled to momentum
equations for the horizontal depth-averaged velocities. This system is referred to as
the primitive form of the shallow water equations. These equations are often solved
on domains with fairly irregular (land) boundaries. Furthermore, to avoid spurious
boundary effects, it is often desirable to extend the domain away from the shore into
deeper waters [38, 5].

Motivated in part by the desire to model flow in complex domains, various finite
element approaches have been developed for the SWE over the past two decades; see,
for example, [31, 27, 26, 34, 41]. Much of this effort has been directed at deriving a
finite element method which is stable and nonoscillatory under highly varying flow
regimes, including advection dominant flows. As noted in [31], a straightforward use
of equal order approximating spaces for elevation and velocity in the primitive SWE
can lead to spurious spatial oscillations. Approaches based on mixed interpolation
spaces [27] have met with limited success. A more widespread approach has been to
replace the first order hyperbolic elevation equation with a second order hyperbolic
“wave continuity equation,” first proposed in [31]. This approach has served as the
basis for numerous finite element studies, see for example, [28, 25, 24, 22, 23, 30, 36,
37, 38, 6, 5, 29, 39], and was analyzed in [9, 10].
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The finite element methods mentioned above are based on continuous approxi-
mating spaces. The wave continuity formulation sacrifices the primitive continuity
equation, thus the primitive form is no longer satisfied in a discrete sense. In recent
years, finite element methods based on discretizing the primitive form of the SWE
using discontinuous approximating spaces have been studied [2, 11, 1]. This discontin-
uous Galerkin (DG) approach has several appealing features; in particular, the ability
to incorporate upwinding and stability post-processing into the solution to model
highly advective flows, the ability to use different polynomial orders of approximation
in different parts of the domain (and for different variables, if so desired), and the abil-
ity to easily use nonconforming meshes (e.g., with hanging nodes). Moreover, the DG
method is “locally conservative,” that is, the continuity equation relating the change
in water elevation to water flux, is satisfied in a weak sense element by element. This
latter property is useful when coupling the SWE to a transport equation for modeling,
for example, contaminant migration [20]. DG methods have proven adept at modeling
hyperbolic equations [17, 16, 15, 13, 19, 4], advection-diffusion [3, 18, 12, 21] and pure
diffusion equations [40, 8, 32, 33]. See also [14] for a more thorough discussion on the
history of DG methods.

In this paper, we will develop and analyze two approaches for shallow water flow
modeling based on discontinuous and continuous approximating spaces. In the first
approach, we discretize the primitive continuity equation using a DG method, cou-
pled to a continuous finite element approximation of the momentum equations. This
approach is useful when local conservation is important, and uses discontinuous ap-
proximations for the hyperbolic continuity equation, while allowing for the momentum
equation to be approximated using more traditional continuous functions. In the sec-
ond approach, we discretize both equations using DG methods. For the momentum
equation, we use a particular DG method called the nonsymmetric interior penalty
Galerkin (NIPG) method, developed in [33]. This approach allows for the flexibility
of the DG method to be applied to both continuity and momentum, if so desired.

The paper is organized as follows. In the following section, we describe the math-
ematical model and define notation. Section three contains the description of the
scheme whereby we discretize the continuity equation by a DG method and the mo-
mentum equation by a continuous Galerkin finite element method. A priori error
estimates are then proven for this approach. In section four, the continuity equa-
tion is again discretized using DG while the momentum equation is discretized by
the NIPG formulation. Error estimates for this formulation are also derived. Section
four contains some numerical results comparing the two methods and the final section
contains concluding remarks.

2. Problem definition. The depth-averaged shallow water equations are de-
rived from the three dimensional incompressible Navier-Stokes equations under the
assumptions of a long horizontal wavelength and a hydrostatic pressure distribution.
The system consists of the primitive continuity equation and momentum equations.
Unknown variables are depth-averaged elevation { = {(x,t) and velocity u = u(x,1).

Let Q be a bounded domain in IR?, with Lipschitz boundary 92, where n is the
fixed unit outward normal to 9€2. For the continuity equation, we decompose the
boundary of the domain into an inflow portion 0€2; and an outflow portion 9o such
that 89 = 9Q; U 000, where 001 = {z € 90 : u-n < 0} and 0o = {z € 90 :
u -n > 0}. For the momentum equation, we assume Dirichlet boundary conditions
on u are specified everywhere on the boundary of the domain.

Consider the following simplified form of the shallow water equations: find ¢ and
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Symbol | Description

¢ Elevation of air-water interface from mean sea level
u Vertically averaged horizontal velocity field

g Acceleration due to gravity
v

I

Vertically averaged turbulent viscosity
Body forces

TABLE 1
SWE variables and parameters

u such that

BHC+V-(ul)=0 (x,¢) €N, t>0, 1)
Bu+gVe—vAu=Ff (x,t)€N, t>0. )

This simplified model contains the primary coupling between the two equations. We
will consider boundary and initial conditions of the form

¢=¢ on Yy, 3)
((x,0) =G on (, (4)
u=1q on 09, (5)
u(x,0) = ug on (. (6)

Here v is assumed to be a positive constant. Table 2.1 contains the variable and
parameter definitions for reference.

2.1. Notation and Function Space Properties. Let {7 },>0 denote a family
of finite element partitions of Q such that no element €, crosses 02. We assume each
element (2, has a element diameter h., with h being the maximal element diameter.
We also assume each element (). is affinely equivalent to one of several reference
elements [7]. Further assumptions on 7} will be given below. Let P*(€).) denote the
space of complete polynomials of degree k > 1, defined on €.

For any function v € H(Q.), for each element ., we denote its trace on interior
edges v; by v*:

v (x) = lim v(x + sn;), vt (x) = lim v(x + sn;),
s—0— s—0+

then define
1
Ezi(”++1’7): [v] =v™ — o,

where x € 7; and n; denotes a fixed unit vector normal to ;. Let ). denote sum-
mation over all interior element edges ;.

We will use the L?(R) inner product notation (-, -)g for domains R € IR?, and the
notation (u,v) g to denote integration over one-dimensional surfaces. Let || - ||z denote
the L2(R) norm on any spatial region R. Tt will be understood that if g € L2(Q,),
then

llglle = llglfa. -
€
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Norms in other Sobolev spaces W(R) are denoted by || - ||y (r). Furthermore, for
9= g(x, t)a

l19]| e (0,7;22(R)) = orél%XT”g("t)“”(R)’

T
91250, 7525(y) = / 19+ 8)112 .

In our analysis, we will use the following well-known trace theorem [7].
THEOREM 2.1. Suppose that Q¢ has a Lipschitz boundary. Then, there is a
constant K! such that

[ollz2o0.) < KLl g, I0lHig,, Yo € HY(Q).

Define

K'=max K!.
e

We will also make use of Young’s inequality: for real numbers a, b and € > 0,
€ . 1 ..
b< —a?+ —b%
b= g0t 5

3. The discontinuous and continuous Galerkin formulation. In this sec-
tion, we will discretize the primitive continuity equation by a discontinuous Galerkin
method and the corresponding momentum equations by a standard Galerkin finite
element method. We will assume that the partitions 7, are quasi-uniform and con-
forming; i.e., element edges align with neighboring element edges.

Multiply equation (1) by arbitrary, smooth test functions v € H'(Q,) and inte-
grate by parts over each element (2. to obtain

(01, v)a, — (u(, Vv)a, +{((u - n.,v)s0, =0, (7)

where n. denotes a fixed unit normal to each edge 0f2..
On each (., we approximate ¢ in a space S¥(€2,), where P*(Q,) C S*(.), and
such that if we define

Vi={v:0 > R:v|g, €S*Q.)}, (8)

then V)¢, the space of continuous, piecewise polynomials of degree k, is contained in
Vi, that is,

VE=VWneo(Q) #0.

Multiply equation (2) by w € (H}())? and integrate by parts over the domain
to obtain

(Bsu, w)a + (9VEw)a = Y _(9[Cw - ni)y, + (WVu, Vw)e = (f,w)a.  (9)

2

Note that the stabilization term ). (g[¢], w - n;),, is actually zero since we are assum-
ing our true solution sufficiently smooth to be continuous.
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We approximate u in the finite-dimensional subspace W, C (H}(Q))2N{u:u =

4 on 0N}, consisting of continuous, piecewise polynomials of degree k. That is, each

component of u is in V. Let W, be the corresponding subspace of (H(€2))?.

Approximate ¢(-,t) by Z(-,t) € Vj, and u(-,t) by U(-,t) € W . Sum (7) over all
elements )¢, and let the value of ¢ across inner element boundaries be approximated
by the upwind value Z1:

Z=, U-n;>0
~ 7T — ’ g .
(rZ _{Z+, U-n; <0 on ;.

At t =0 define Z(-,0) = Zy € V, and U(-,0) = Uy € W, by
(ZO - COJU)Q = 07 Vve Vha (10)
(Uo — uo,w)g =0, Vweée WO,h- (11)

The discrete weak formulation is: for each t > 0, find (Z,U) € V}, x W, satisfying
VoeV,and Vw e Wy,

Z(atZ,U)Qe - Z(U Z7 vv)Qe + Z(ZT U- ni, [v]>’Yi

e e

+{Z 4 n,0)00, = —((@-n,0)00, (12)

K3

OU, w)a + 39V Z,w)a, - S g1Z],w-ni)y, + VU, Vw)g = (f,w)a. (13)
e
3.1. An a priori error estimate. Define (;(-,t) € V¢ to be the continuous
interpolant of {. Define the parabolic projection ITu(-,t) € W, such that
(Or(Mu — u),w)o + WV(IIu — u), Vw)o =0 Yw € W ,(Q),
with TTu(-,0) equal to the L? projection of ug into Wp; that is,
(Du(-,0) —ug, w)o =0, w € Woi(Q).

In our analysis, we will use a standard inverse inequality, valid for continous (and
discontinuous) piecewise polynomials on quasi-uniform triangulations [7].
THEOREM 3.1. Let v € V. Then,

vl o) < KPRl r2), (14)

where K is independent of h.
Our estimate will rely on certain smoothness of the solutions. We will assume the
following constants are finite:

T
fe= /0 [HatC“i”(Q) + ”C”%W(m] dt + 1ol 7 () (15)
T
K’u = /0 I:”at’ll:”qu(g) + ||U||§{k+1(9)j| dt + ||u0||§ik(§2)7 (16)
Ky = [|ul|ze0,m;w () (17)
KZ = ||<I||L°°(0,T;W1°°(Q)). (18)
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Finally, we will assume that a constant K7, > 2K Z‘, independent of h, exists such that
the finite element solution Z satisfies

I1Z]| £ (0,7, (0)) < K7 (19)

For k£ > 1, we will prove inductively that for h sufficiently small, our estimate does
not in fact depend on K.

Define
ec =27 -(1, e, =U —Tlu,
HC:C_CI; OUZ’U,—H’U,,
el=27"—(r.

THEOREM 3.2. For u,( sufficiently smooth, the scheme (12)-(13) satisfies the
error estimate

||| (eCa eu) "l < thk; (20)

where

2l (ec; e) I* = llec(D)II + llew(D)G

T T
+ / SN - il [l + / (I - 1], €)oo dt
T T
+/ (|U-n|,eg)agldt+/ |12V e, |3 dt,
0 0

and K is a constant independent of h and k, but dependent on g, v, K', K, K¢,
Ku, K, Ky, and K. For k > 1 and h sufficiently small, the dependence of K1 on
K7, can be removed.

Proof. Standard approximation results for {5 and Hu give
T
/0 [11068¢ 116, + 116¢] |71 ) + P2 116¢ NIR1dt + [16¢ (0] < K (Ke)p?*,  (21)
and

T
0B + 118ul o < K 0 Koui. (22)

Subtract the weak formulation from the corresponding discrete formulation (12)-
(13), and integrate in time from 0 to 7T'. Incorporate Ilu and (r, and take (v,w) =
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(€¢, €q) to obtain

T T T
/0 Z(ateg,eg)gedt—‘/o Z(Uec,veg)gedt—}-‘/o Z(eZU-ni,[ec])%dt
T T T
+/ <€§ﬂ'n,€<)agodt+/ (Bteu,eu)gdt+/ Z(gVeg,eu)Qedt
0 0 0o <
T T
—/ Z(g lec], eu -n,-)%.dt%-/ (vVeu,Vey)adt
0o 5 0
T T
:/ Z(atGC,ec)Qedt—/ Z(UC—UCI,Veg)QEdt
0 e 0 e
T
+/ Z(Cunz — ¢ U -my, [ec])dt
0

T T
+ / (0( a-n, GC)BQO dt + / (gVHC, ey)odt. (23)
0 0

We first consider the left hand side of this equation. The first term and fifth terms
can be written

T
1 1
| S @ecieon.dt = 3llecTIf - 3lecO) .
1
> Sllec(DI - K(Fo)w*, (24)

T
1
| S@enedad = gleumis. (25)

since e,(0) = 0.

Integrate the second term by parts to obtain

/ZU@C,VeCth /Zv U,ef)o.dt

T
_5/0 ;(U.ni,[ef])%.dt—%/o <U"n,€g>agdt (26)

Note, however, that the jump term above can be combined with the third term in
(23) yielding

/ ZeCU 1, [ec]) dt——/ ZU nz,[ec / Z|U nil, [ec]?)

(27)



The boundary term can be combined with the fourth term in (23) to obtain

1

T T
/ (@ - n,eg)agodt - 5/ (U - n,eg)aﬂdt
0 0

T 1 (T 1 /7T ,
= / (- n,eg)agodt - 5/ (U - n,eg)agldt - 5/ (Mu - n, e¢) oo dt
0 0 0

1 [T 1 [T
= 5/0 (|ﬁ.n|,eg)agodt.+§/0 (|U.n|,e§)3gldt
1 T
+§/ ((ﬂ—Hu)-n,eg)agodt. (28)
0

Integrate the sixth term by parts and combine with the seventh term to obtain

T T T
/0 S (6Vec. o, di= / S tglech eurmiddt = - / Do V-enn.dt. (29

The eighth term can be written
T T
/ (VVew, Veu)odt = / /2 V ey |2 dt. (30)
0 0

Combining each of these results into equation (23) yields

1 1
Sllec@)I+ 5 llea(T)1

1t 1t
+3 [ AU e+ g [ (il oo

1 T T
43 [0 nl ond+ [ 2Ve, R
0 0

T T
< K(K)h+ / (046, ec)a, di- / S (w¢-U (1, Vee)o, dt
0 e 0 e

T T
[ S m = U e+ [ (6ciemecdonads
o 5 0
1 T

T
- 5/0 (& — ) - ’n,eg)agodt + /0 (gVHC,eu)th

1 T T
—5/ Z(V-U,eg)gede-/ D (gec, V- eu)q.dt
0 € 0 e

= K(K)h* +Ty+..4Ts.
(31)

We now bound each of the terms on the right hand side of this equation. The
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first term can be bounded as

T
T :/ Z(ateg,ec)gedt
0 e
T
< [ 1odtcla leclindt

1 (" SR B
<5 [ lodclade+ 5 [ leclp
0 0

1 T
< KRN + 5 [ lleclpt. (32)
0
Integrate Ty by parts and combine with 73 and Ty to obtain

T
T+ T+ Ti=- [ Y (w¢-UG, Veoo.d
0 e
T T
+/0 ;(Cu-ni—CIU-ni,[eg]).Yidt+/0 (eg’a-‘n,eg)agodt
T T R
:/ Z(V-(uC—UCI),eC)Qedt—/ (Ca-n— ¢ Tu-n,ec)andt
o 0
T

_/0 (¢ (@ — M) - n, ec)any dt. (33)

Bound the former term as
T
/ S V- (u¢—Ur),e)a.dt
0 e

T T
= | S0 wbeead+ [ S - Vo ec)a.di
r R
+/0 zg:(CI V- (0, —eyu),ec)o. dt + /0 Z;(VCI - (0y —ey),ec)q.dt

T T
< K(K3) / 10 2 oyt + K () / 10012yt
0
T T .
LR (K, v) / lealldt + K (KZ,v) / lecll3dt
0 0

1 T
+—/ ||V1/2Veu||?)dt
8 Jo
T
< K(v, Ku, K¢, K3y K2R + K (K, v) / lleald + llec21dt

1 T
+§/ |11 /2Ve,||3dt. (34)
0



and the boundary terms as

T T
—/ <<’LAL‘n—CI Hu-n,ec)agldt—/ (CI('&—Hu) "n,eg)agodt
0 0

T T
= —/ (Oca-n,ec)s0,dt — / (1 (u —TIu) - m, ec)andt
0 0
T
< K(Ky) / V26 llogn 1172 lec lond
0
T
KK [ 02 - Tw) - oo Bl ondt
0
T T
< K(K5, KY) / 10 lollfc oy dt + K (K2 KP) / B 18l lol|6ull 1 (e dt

T
LK(K K / lecI3dt
0

T
< K(Ky, K} K Ky, K¢, v)h** + K(KtyKi)/ llec|[&dt (35)
0
Similarly,
1 [T )
Ty = —5/0 (@ — TIu) -, e2)oa, dt

1 o
< —||€<||L°°(0,T;L°°(Q))/O |[(& — TTu) - n||aa, |le¢||ano dt
T
< K3 K K K 0 4 KKK [ el (36)
0
Integrate Tg by parts to obtain
T
T :/ (gVbc, eu)adt
0
T
= —/ (gﬁg,V . eu)th
0
a1 [T 1/2 2
< K(g,v, Ku)h™* + 3 [|[v 7 *Vey|gdt. (37)
0

We bound T as
1 T
T, = 5/0 ;(—V-U,eg)gedt
1T 1 T 1 [T
=—§/0 ze:(v-eu,eé)gdt+§/0 ze:(v-eu,eé)gd - 5/0 ze:(v.u,ei)gdt

T
gK(Kg,K;,K;,,y)/O lecl[Bdt + K (v, Ku, K2, K)h2* +

1 T
< / |12V e, ||dt. (38)
0
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Finally, Ts can be bounded as

T
Tg = / Z(g e§,v . eu)gedt
0 .

T T
1
<Klg.w) [ lleclpat+5 [ 102 Veulfhat (39)

Combining each of these results into (31) yields
1 1
SllecDIg + 5 llea(D)II%
2 2

1T IR
+f) 0U et g [ (i nl oo
1 T T
+§/ (|Hu-n|,eg)agldt+/ ||V1/2Veu||?)dt
0 0
) 1 T
< K(Ku, K¢, K K' K¢ K7, Ky, g,v)h™ + 5 / 10!/ Ve|[dt
0
T
+ K (K K3, K¢, K, 9,v) /0 llecll?, + lleull5)dt.  (40)

We hide the term 1 fOT |v'/2Ve,||3dt in the left hand side and apply Gronwall’s
lemma to obtain (20).
We recall another inverse inequality, valid in two dimensions,

||6C(7t)||L°°(Q) S Kh71||eC('7t)||Q7

where K is independent of h. Assuming k£ > 1 and h is sufficiently small, we have

1Z]| Lo, m;e=()) < |[CrllLe(o,r;e=()) + llecl|Le=(o, 1= ()
< Kf+KEKh*!
<< 2K}
< K3

Thus, we can remove the dependence of K; on K. 00
By the triangle inequality, we easily obtain
COROLLARY 3.3.

1€ = Z2)(D) + [I(w - U)D)|| < Kih*. (41)

4. The discontinuous Galerkin and NIPG formulation. To formulate an
alternate weak form of the shallow water system, we will discretize the primitive
continuity equation by a discontinuous Galerkin finite element method and the corre-
sponding momentum equation by the NIPG discontinuous Galerkin method [33]. In
this case, the inflow and outflow boundary regions are defined as 9 = {z € 90 :
U-n <0} and 0Qo = {z € 90 : U -n > 0}, respectively, for 9Q = 0Q1UINo, where
U =~ wu is given by the NIPG method. In this case, we will assume only that the
partitions 7y, are nondegenerate [7]. In addition, 75 may possibly be nonconforming;
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that is, element boundaries need not align. However, we will assume that any for
any element )., the number of neighbors of 2, is bounded independently of h. A
neighbor 2./ is any element such that

interior of 9Q, N 9N # 0. (42)

For such neighboring elements, we also assume a local quasi-uniformity; that is, there
exists a positive constant K? < 1 independent of Q. and Q. such that

K<t

=

Each edge ; in the mesh is connected to at most a fixed, finite number of elements

Q. as h — 0. Denote this set of elements by 7,, and let h,, denote the maximal

element diameter over this set. Edges on 0} are of course connected to only one
element.

Multiply equations (1) and (2) by arbitrary, smooth test functions v € H'(,)

and w € (H'(Q.))? respectively, then integrate by parts over each element . to

obtain:

< (K9~ (43)

(atCJU)Qe - (u C’V’U)Qe + <CU ) neav)aﬂe = 07 (44)

(Opu, w)a, + (9V( w)a, + WVu,Vw)a, — (vVu - ne,w)se, = (f,w)a,. (45)

Summing over all elements {2, and noting that both the velocity and its normal
flux are continuous, we obtain the weak formulation:

Z(atC7 U)Qe - Z(u CJ VU)Qe + Z(C u-ng, [v])"ﬁ

e e

+{Ca-n,0)000 = —((@-n,0)on, (46)

D G, w)a, + Y (9V¢w)a, = Y (9[¢,W - ni)y + Y (WY, Vw)a,

e i

- Z(m " M, [w])’}’z + Z(N—w " M, [u]>’)’i — (¥Vu - n,w)s0

+ {vVw -n,u — @)sq = Z(f;w)ﬁe- (47)

€

Note that the stabilization terms —(g [¢],W - 7;),, and (vVw - n;, [u])-,
well as the boundary term (vVw - n,u — @) sq.

On each Q., we will use the finite dimensional approximating spaces Vj, C H'(Q,)
and W, C (H'(9,))? defined by:

are zero, as

V={v: Q> R:v|g, € 'Pkg(ﬂe)}
Wi = {w: Q5 R : wlo, € (P* (0,)?),

where k$,k¥* > 1. Approximate ((-,t) by Z(-,t) € Vi, and u(-,t) by U(-,t) € W,
Sum (7) over all elements ., and, as before, let the value of ¢ across inner element

boundaries be approximated by the upwind value ZT where
zZ, Umni>0
~ 7T = y Yl >
S { 7+, U-n; <0,
12
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At t = 0 define Z(-,0) = Zy € V, and U(+,0) = Uy € W}, by
(Zo — CO;'U)Q = 0, Vove Vh, (48)
(Uo — ug,w)q =0, Ywe Wy (49)
The discrete weak formulation is: for each ¢ > 0, find (Z,U) € V}, x W, satisfying

2_0Zv)e, =3 (U Z,Vv)a, + 3 (2"U - ni,[v]),

e e

+{ZU -n,v)90, + (CU -n,0)s0, =0, (50)

Z(atan)Qe + Z(gVZ,'w)Qe - Z(g [Z],ﬁ : ni)’h’ + Z(UVUa Vw)Qe

e

=D VU mi [w])y, + Y @V - n;, [U))y, = (VU - n,whoe
+ <va -n, U - ﬁ)ag + Z(U[U], [w]>"h’

+{o(U — @), whon = )_(f,w)a,, (51)

e
where we have introduced the “interior penalty” term ). (co[U], [w]),, and the “bound-
ary penalty” term (o(U — @), w)sq. Here o > 0. We assume

2w = O3, (52)

ag

4.1. An qa priori error estimate. Let 7( € V,, and nu € W) be the L2
projections of ¢ and u, respectively; i.e.,

(WC - C?U)Qe = 07 v E Vh7
(ru —u,w)g, =0, we Wy,
Define

e¢ =Z —7(, e, =U — 7u,
0 = ¢ —mg¢, 0, =u — 7u,

We will assume constants K7 > 2K and Ky, > 2Ky, exist such that
| Z]| Lo (0,150 () < K7,
Ul (0,751 (0)) < K7,
where K7 and K7, are defined by
Ky = |[ulln=(0,7;wp ) (53)
K} = [|7¢l|Lo 0,15w ())- (54)
We will also use a local version of Theorem (3.1). In particular, for v € V},,

llollar o) < Kehetvlla., (55)
13



where K is independent of h,. A similar result holds for w € Wp,. In the arguments
below, let K* = max, K.

THEOREM 4.1. For u,( sufficiently smooth and positive penalty parameter o
satisfying (52), the scheme (50)-(51) satisfies the error estimate

1/2
2k 2kY
I ecrea) |||<Kz{ [ Z[ Ry 125 Nl )| dt} ,

where
2|| (e, €u) I? = llec(D)IIE + llea (D)
+ /T ||V1/2Veu||?zdt+/TZ(lﬁ-nila[ec]2)wdt
T0 7(3 i T
+/0 <|U-n|,62>mdt+/0 Z:||a1/2[eu]lﬁ.dt+/0 llo*?eu|3adt,

and K is independent of h, but depends on g, v, K9, K!, Kt, K¢, Ky, Kf] and
K3. For kS,k% > 1 and h, sufficiently small, the dependence of Ko on K3 and Kij-

er’’e
can be removed.
Proof. Subtract the weak formulation (46)-(47) from the corresponding discrete
formulation (50)-(51), and integrate in time from 0 to 7. Incorporate the projections
mu and 7¢ and take (v, w) = (e¢, e,) to obtain

T T T o
/0 ;(@ec,eg)gedt—/o ;(Ueg,Veg)Qedt+/0 ;(eZU-ni,[eg])%dt
T T T
+/0 (eCU-n,eC)aQOdt+/0 ((fU-n,eC)agldt—l—/O ze:(ateu,eu)gedt
T T T
+ /0 ;(gVeg,eu)Qedt— /0 Zi:(g[eg],a-n,-)%.dt-l- /0 ZG:(VVeu,Veu)Qedt
T T
+/0 ;(U[eu],[eu])%dt—%‘/o (oey, ey)oadt
T T .
= —/0 Z(uC—UwC,Veg)gedt-l-/o Z((Cu—WCT O) - ni,[ec])dt

T
+ [ (¢t —mcU) mechongdt + / (G- moec)ondt
/ Z gVoc,eu)q. dt—/ Z [0c),€u - 15),

_/0 ;(UVHu-ni,[eu])%.dt—i—/o ;(Vveu'ni,[au])%dt

T T
_/ (Vveu'n;eu)agdt+/ (o(mu —4), ey)oadt
0 0

T T T
+ /0 g(yveu,wu)gedw /0 Zi:(a[eu],[eu])%dt+ /0 Zi:(aﬂu,eu)agdt. (56)
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We first consider the left hand side of this equation. The first and sixth terms
are rewritten per equation (25) in the previous proof, noting that e (0) = e,(0) = 0.
Integrate the second term by parts to obtain

/ZUeC,VeCth /Zv U,ef)o.dt — /ZeCUnz edt

1

T
- 5/0 (U-’n,eg)agdt. (57)

The third term of the left hand side can be combined with the jump term above to
obtain

/OT;@U'%[GC])%# - %/j;([er-m],l)%dt

= /TZ«%U-W lec] - %[e%]ﬁ-ni - %%[U] 1), 1)t
/ Z ¢~ e U -mi, [ec])y / Z “ni, 1), dt
5/0 ;<|ﬁ'"i|’[e<]2)wdt— 5/0 ;([U] “ni,e2),dt, (58)

where we have used the fact that [ab] = @[b] + [a] b and that }[a®] = [a]@. Moreover,
the boundary term in (57) can be combined with the fourth term to obtain

1 T T 1 T
—5/0 <U-’I'L,eg>39dt+/0 (U-n,ef)agodt: 5/0 (|U-n|,e§)agdt. (59)

Integrate the seventh term by parts and combine with the eighth term to obtain

T T
| Savecedndi- [ Sgled.enni
0o 0 5
T T T
- [ Seevedadi+ [ Ylae e mbdt+ [ (gecie, niomdt
0o 5 0o 5 0

(60)

The remaining penalty terms can be written as

/OT Z(U[eu], [eu]) dt + /0T<Ueu,eu>39dt

T T
= [ Sl e+ [l eulbodt. (61

15



Combining each of these results into equation (56) yields

1 1

Sllec(DIR + 3leu(T)I

T 1/2 2 1T 77 2 17 2
# [ W eedbar s g [F ST w4 5 [0l et

T T
+ [ Sl leall -+ [ o e
T
=—/ D (w(—Un¢, Vec)o.dt
0 e
T o T
+/0 ;«CU—WCTU)'ni;[€<]>wdt+/0 (Ca—mCU) - n,ec)onsdt
T T T
AA_U-, d Vo, ey)a. dt — 0], €q - mi)y, d
+ [ @@=y neonar+ [ S (6V6cseula, i /0;@[416 n),dt
T T T
- [ SOV s leudrs [ EVew w8t [ 690 ot
1 /7 1 /T _
_5/0 Z(V‘Uaeg)nedt+§/0 Z([U]-m,eg)%dt
T ’ T ' T
+/0 Z(geg,v-eu)gedt—/o Z@Qa[%]'ni)%dt_/o (g9e¢, ey -n)odt

T T T
+ /0 ze:(yveu,wu)gedwr /0 ;(U[BU],[eu])%dt+ /0 (08, ot

=T +..+ T17. (62)

We now bound terms 73 through 777.

T; is integrated by parts, yielding

T
T, = —/0 D (w¢—Un(,Vec)o. dt
T
= | S e Um0, cc)a. i

T T
- / S feclCu—mCU) ], 1yt - / (C—7CU) - mec)ondt. (63)
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Bound the first term above similar to equation (34), giving

T T
/0 SV (¢ = UnQ)ec)adt < K(K) / S 11662 ot
e TC

T T
+K(Kg,y)/0 ||eu||?)dt+K(K§‘,u)/0 llecll&at
1 T
+§/ [V /2 Ve, |3 dt. (64)
0

The second term in (63) can be combined with T5 to yield

T
T [ Y llec Cu=mCV) ml 1), e
T ' . T
:/0 2 ((Cu=nC"T) - mi, fec])q.dt —/0 2 _{lec (Cu = mCU) - mi], 1), dt
T
= [ U6 - )T i - (01U - e
0 = 4

T
+ / S (7C(lea] — [84]) - mi — [8]T - i, 7).t
0
=To+Top+Toc+ T4, (65)

[a][0].

where we have again used [ab] = @[b] + [a] b and ab = @b +
Consider

PN

T _—
Too= [ 306 8T - milec)t (66)

We will use an argument here which we will emulate several times below in various
forms:

S0 - i fec)), < K(K) Y 6]

2

Vi [eC] Vi

< K (K, K9 Y 10l 16c] 57 0 lecl 1. ec [ .
< K(K{r, K9 b 0cll. 10| a0 + Y elleclla. llec] i (g.)
< K (K7, K% S b M l6cllo. 116 110 + KK Y leclf, - (67)

Thus

%+||§

%)

T
T < K(Ky) / S (116} lleclln.dt

T T
< K(Kjy, K') / Sz bl o 10c i o) + K (K) / lleclBdt.  (68)
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Terms T and T3 ¢ have similar bounds. Consider

T P
Ty = / S (el = 18u) - i )t (69)

Here we will use another argument, repeated in various forms several times below. In
particular,

T T
/ Z([eu]aa)%’dtz/ Z(Ul/z[eu]aail/QQ)’h’dt
0o 5 0o
T T
<e [ Sl el e+ K [ 3o el di
0o 5 0o 5
T
<e / 3o 2 e, dt
0
T
KK [ Yot Y leclo.lleclls oy
0 Q.€Ty;

T
< / > ot [en]l2,dt
(U

T
LK (K KY) / > helleclla.llecllu .y dt

i Q.€Ty,
T
<e [ Sl e
0o
. T
(KKK [ el (70)
0 e

where we have used the trace inequality and inverse inequality (55), (52) and (43).
Thus,

T
Too= [ S (FCllen - 60.) i)t
0
T o T e
= [ St e no eyt~ [ w10 nave) e
0o 5 0o 5
1 T ) T
<5 [ SN0 el e+ k(g KKK [ el
0o 5 0

T
+E(KY) / S 218l 16u] (0 . (71)
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The remaining boundary term in (63) can be combined with T3 and T}, yielding
T
Tyt Ty — / (Cu—nCU) -, echondt
0
T
= [ (G- mc0) - m,eq)ons
0
T T
/ (C(a—U)-n,ec)oodt — / (Cu—7¢U) -n,ec)pndt
0 0
T T
= —/ <9§ €y - n,eg)agldt +/ <9( a, - n,ec)agldt
0 0
T
_/ <9Cu'n7eC)BQIdt
0
T T
< K5, K7) [ llew nllony16clon dt + KOKZ) [ lecllon 18, ooy
0 0
T
K G) [ 16clonlecllomt
T
< KUK [ (leallh + llecllp) o
T
(KK D) [ 10l 10ul ot
T
K (G ) [ a1l st (72)
Integrate T5 by parts and combine with Ty to obtain

T T
T+ To= [ 3o oo~ [ S glocen mib
0 e 0 i
T T o
:—/ Z(g@c,v-eu)gedt+/ Z(gﬁg,[eu]-ni)%dt
o 5 0o 5
T
+/ (g0c, ey -m Ypodt
0
T T L
< K(g,) / S 110cI, dt + K (g) / Sl 128
T 1729 (12 e 1/2
+K() [ Sl ol + 55 [ 3 o' e

17 . I
by [ Nlo el adi+ g [ 11 Ved s
8 Jo 8 Jo

2
Vi dt

2
Vi dt

T
< K(g,v, K*, K1) / ST 116I3. + hellBclo. |16l 10 oyt

e

2 4 9)|0t 2e, |2 + llvl/QVeull?z} dt. (73)
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Continuing,

T
T =— / > (V8. -, [eu])dt
0

T _ _ 1 T
<KW [ Yl 290, mlB i+ 5 [0 ot el e

T
< K(v, K*, KY) / S el [98ullo. [[V6ul [ ot
0 e
41 / S ot e 2
16 o - Yi?
and
T [
Ty :/ Z(VV&U -, [0u]), dt
(U
T
[
(U

1 1
- § /2 2
< 16/(; - ||I/ CeuHQedt

1/1/2 [Ou]

Vi Yi dt

T
LK (v, K K / S 218l 14l -
0 e

T
Ty = —/ <1/V0u . ’n,eu)agdt
0

T T
1
gK(y)/ ||a*1/2vou.n||ggdt+§/ llo'2ey||30dt
0 0

(74)

T T
1
SK(V,Kt,K")/ > heIIVOUIIQeIIVBUIIHlme)dt+g/ llo' e l[3adt.(76)
0o 0

Apply the steps in equation (38) to bound Tig as

17 )
Tyo = —5/0 ze:(v U, €ed)o.dt

1 T
- [ 0w, o

1 r * * * r
<o | Vet + K g KK [ el
0

=16 J,

T
FK(K:K) / S (IV6.|[3, dt.
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Next,

T, = / Z [U nuec / Z eu : i_ ]'nh%)'wdt

v dt

i Sl fea] mil
af pOIICARA
< / Sl el

' T
FR(KE K KK [ eclfae
0

T
K(K") / S5 Bullo. 18] 1ot

T, is easily bounded as

T
T1s =/ > (gec, V- en)q, dt
0 e

T 1 T
<Kgw) [ Sleclbdi+g [ X102 Veul.d
0 e e

while the bound on Ty3 and T4 is

T T
Tis+ T = —/ Z(g g, [eu] - i)y dt — / (ge¢, ew - m)aqdt
0

T
<5 [ S lenli e+ KO KK [l

2 [ Sl eulaat
[

T
Tis = / Z(VVOu,Veu)Qedt

1
< K(v / Z||ve IS dt+—/ |12 Ve, |3 dt.

Finally

T
T16 + T17 = /0 lZ(a[Ou], [eu])%. + (aOu, eu)aQ‘| dt

%

T
< K(K', K9 / S5 0ullo. 18l (ot

15/ [leﬂ[e )
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Combining each of these results into (62) and hiding terms yields
llec(DIG + llew(D)I%

T T T
4 [ W Velfpde+ [T ml eyt + [ (U - nl,ehonds

0 0 i 0

T T

[ Sl el il e+ [ el
0o 5 0
T
<Ko [ llecl+lleul) .

T
+ K3 {/0 Z (R H10c 2. 10¢ [ 0y + he H10ulle. ||0ul] (0.

+hel [V8ullo, V8ull 0.y + 183y + 18ullir o,y | dt}, (83)

where K3 = K(K‘I,Kt,K",K{L,KZ,K},K*U,g,u). Assuming sufficient smoothness
of ¢ and wu, local error estimates for the L? projections m¢ and mu give

_ ¢
B2 60cllo. + 116cl 20y < Kool 1Cl s r

he *[10ulle. + b t10ullf1 () + VOl 0. < Kelhe) s~ lul grz+1 (g,

where K, is a constant independent of h.. Substituting these estimates into (83) and
applying Gronwall’s Lemma, we obtain (56).
The dependence of K> on K7 and K f] can be removed for h, sufficiently small

and k¢, k¥ > 1 as in the proof of Theorem 1. O

5. Numerical Results. In this section we present some one-dimensional numer-
ical results for the schemes discussed above. The first test case examines the order
of convergence of both methods, while the second test case comapres each method’s
ability to model tidal fluctuations. The DG/conforming Galerkin finite element dis-
cretization with linear basis functions and the DG/NIPG method with P! Legendre
polynomials are implemented on elements of equal size. Time discretization is by
Euler’s method with a sufficiently small timestep so that temporal error is negligible
compared to spatial error.

5.1. Test Case 1. We consider the test problem

O1C + Oz (ug) = f (z,t) € [0,7/4], t > 0,
owu + gV({ —vOpu = f (x,t) €[0,m/4], t >0

for g = 9.81, v = .01, and impose boundary conditions such that the exact solution is

¢ = cos(z — t),
u = sin(x + t).

Tables 1 and 2 contain the L? errors measured at time 7' = .5 and corresponding
convergence rates for both methods applied to this problem. The NIPG method
incorporates a penalty parameter o = O(1/h). For each discretization, “optimal”
order O(hP*1) (for this case p = 1) accuracy was observed which is better than what
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we have proved above. However, this optimal numerical convergence is typical of the
discontinuous Galerkin methods applied to convection-diffustion type problems.

Table 1. Convergence results for the discontinuous and continuous
Galerkin formulation.

N error in C | rate | error in u | rate
32 | .00005642 .00003271

64 | .00001403 | 2.01 | .00000821 | 1.99
128 | .00000353 | 1.99 | .00000208 | 1.98
256 | .00000090 | 1.97 | .00000053 | 1.97
512 | .00000023 | 1.97 | .00000013 | 2.03

Table 2. Convergence results for the discontinuous Galerkin and
NIPG formulation.

N error in ( | rate | error in u | rate
32 | .00005493 .00002046

64 | .00001378 | 2.00 | .00000547 | 1.90
128 | .00000348 | 1.99 | .00000145 | 1.92
256 | .00000088 | 1.98 | .00000038 | 1.93
512 | .00000022 | 2.00 | .00000009 | 2.01

5.2. Test Case 2. In order to compare the methods’ ability to mimic tidal
fluctuations, we consider the test problem

¢+ 0z (uz) =0
oyu+ gV({ — v0yzu+Tu =0

(z,t) € [0,10000], ¢ > 0,
(z,t) € [0,10000], ¢ > 0,

where z = ¢ + hy for mean sea level hy(z) = 10. Coefficients are defined as g = 9.81,
7 = .01, and v = 25. Our initial and boundary conditions are of the form

((z,t0) =0 at to =0,

u(z,t9) =0 at to =0,
Oru(zr,t) =0 at g, =0,

u(zgr,t) =0 at xr = 10000,

C(zr,t) = .1 cos(ta) at z, =0,

for o = .000140518917083, where the tidal forcing function at ((xr,t) is linearly
ramped up over 2 days time. We run each simulation for ' = 12 days with a time
step of dt = .25 seconds on a mesh of N = 25 points, and a time step of dt = .05 on
meshes of N = 50,100 points.

In Figure 1(a), we compare the overlapping solutions for elevation ( of each
method at point £ = 800 for the time length of the simulation on 25 nodes. A
more detailed picture from time ¢ = 8 to 10 days of the elevation is contained in
Figure 1(b) and of the velocity in Figure 1(c).

Similarly, in Figures 2 and 3, we compare the solutions for meshes of N = 50 and
N = 100 respectively. Figures 4 through 6 display similar data at point = 3600 in
the mesh. As the number of elements increases, the methods converge to the same
solutions.
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F1G. 1. 25 nodal points approximate solution to shallow water test case 2 at x = 800 for the
discontinuous and continuous Galerkin method as well as the discontinuous Galerkin and NIPG
formulation.

6. Conclusions. In this paper, we have presented two formulations for the dis-
cretization of a simplified model of the two-dimensional shallow water equations. Both
finite element methods utilize discontinuous approximating spaces for the primitive
continuity equation. This DG approach has a number of useful properties, including
adaptivity as well as the ability to incorporate non-conforming meshes and stablity
post-processing. The first method utilizes continuous approximating spaces to dis-
cretize the continuous momentum equation and is useful when local conservation is
important. The latter method discretizes the momentum equation via the NIPG
method allowing for the flexibility of a DG method applied to both equations. We
have presented an a priori error estimates and demonstrated “optimal” numerical
convergence of order h? with linear finite elements for both methods.

Good agreement between the two methods has been obtained for a particular
case study modeling tidal fluctuations. Convergence to the same smooth solution
was demonstrated as the mesh size was increased for this test problem. However,
the combined DG and NIPG method results were particularly sensitive to the choice
of parameters utilized in the simulation. We intend to investigate whether this is a
function of the NIPG method specifically, or more generally the application of DG
methods to the momentum equation.
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F1G. 2. 50 nodal points approzimate solution at x = 800 for the discontinuous and continuous
Galerkin method as well as the discontinuous Galerkin and NIPG formulation.
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