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Abstract 

In 2017, Bureau of Economic Geology researchers at the University of Texas at Austin, acquired 

topographic and bathymetric airborne Lidar data over Lower Laguna Madre, which is a shallow 

hypersaline estuary at the southern end of Texas. The nature of this data acquisition campaign was 

unique due to size (1600 km2) and the dynamic environmental conditions that influenced the depth and 

water quality. Researchers acquired 60 hours of airborne Lidar data and completed in-situ 

measurements from a boat to quantify water quality and depths. Data analysis included processing 

Sentinel-2 L1C satellite imagery to predict water quality and to determine areas with high turbidity. To 

confirm the topographic heights and water depths, Lidar measurements were compared to GPS 

elevations, sonar, and satellite bathymetry using least-squares algorithm. Because ALB technology is 

superior in detail compared to satellite bathymetry, results produced skewed distribution for satellite 

bathymetry with an average depth disparity of 6-25 cm (RMSE of 22-35 cm) where water depths were 

shallower than 1.5 m. The study concluded that satellite bathymetry can be a cost-effective method to 

complement ALB mapping efforts; however, varying environmental conditions, bottom properties and 

tidal influences have a direct impact on depth accuracy and wholeness of data sets.  

 

 

1) Introduction 

 Remote sensing is an advanced imaging technology that enables information retrieval of objects 

and measuring targeted surfaces from a distance using an active or passive propagated electromagnetic 

energy (EM, Figure 1). Passive remote sensing techniques measure the ambient EM energy reflected by 

target surfaces, allowing researchers to detect and characterize features through recorded variable 

spectral responses (Khorram, 2012; Thenkabail, 2018). In the recent years, use of active remote sensing 

technologies from an airborne platform (orbiting satellite or an aircraft) has become increasingly 

popular to measure the topography of hard surfaces or the depths of relatively shallow and transparent 

waters. Therefore, a number of projects investigated and used the technology towards coastal 

applications such as shoreline mapping, erosion and change detection (Brock and Purkis, 2009; Klemas, 
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2011; Paine et al., 2017). Added to the depth measurement capabilities, topographic data acquisition 

capacity of airborne platforms has led to initiating new and diverse research projects.  

The Bureau of Economic Geology (BEG, The Bureau) at the University of Texas at Austin has 

been involved in airborne Lidar surveys (ALS) for nearly two decades. The Bureau has initiated and 

completed numerous airborne topographic airborne Light Detection and Ranging (Lidar) surveys using 

an Optech Airborne Laser Terrain Mapper (ALTM) ALS, applying specific best practices and quality 

management procedures to a diverse range of applications since 2002 (Saylam et al., 2018b).  

Figure 1: Electromagnetic energy spectrum and wavelength dispersion of active and passive sensors 

(Muller, 2017).  

In 2012, BEG purchased a custom airborne Lidar system, manufactured by Airborne 

Hydrography AB (AHAB) of Sweden, with bathymetric measurement capability, named “Chiroptera”. 

Chiroptera uses a near-infrared (NIR, 1064 nm) wavelength for topographic data collection and a green-

wavelength (visible, 515 nm) for bathymetric data collection. Over the years, BEG has established itself 

as a premier airborne Lidar research institution and contributed to the growing popularity of ALS science 

by initiating and completing several projects with diverse scopes. Some of these projects involved in 

determining the size and depth of thermo-karst lakes on the Alaskan North Slope (Paine et al., 2015; 

Saylam et al., 2017a), mapping of the shallow seafloor along the Gulf of Mexico and in the Pacific coast 

(Paine et al., 2017) and mapping bottom morphologies along various river sheds (Saylam et al., 2020, 

2018a). Furthermore, BEG involved in a variety of applications to monitor the coastal (gulf and bay) 

environments to understand the susceptibility of coastal lands to tropical storm flooding and over-wash, 

and quantifying the hurricane impact and subsequent coastal recovery (Caudle et al., 2019; Paine et al., 

2013).  
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In 2017, BEG researchers acquired topographic and bathymetric airborne Lidar data of Lower 

Laguna Madre, a hypersaline estuary in southern Texas (Figure 2). Airborne data acquisition covered 

bank-to-bank channel bathymetry of the entire lower lagoon, the South Padre Island shoreline, and the 

southerly-located inland water reservoirs as outlined with the yellow polygon in Figure 2. In addition to 

the airborne data acquisition, BEG researchers conducted localized in-situ measurements to quantify the 

water transparency and acquired sonar depths from a kayak to verify the accuracy of bathymetric 

measurements. The nature of this study was significantly different because of the area size (~ 1600 km2) 

and the dynamic nature of the lagoon. 

 

Figure 2: Lower Laguna Madre, the yellow polygon indicates the extent of the airborne Lidar survey 

area.  
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The survey area was fragmented into six sections (A-F) because of its size and the diverse 

ecologic nature of the lagoon (Appendix A, Figure A-1). Sections A, C and E included areas of hard 

surfaces and lagoon shoreline, where sections B and D contained primarily the lagoon waters. Section F, 

island causeway to the international border (U.S.A. to Mexico), is a mix of hard surfaces and include 

various inland reservoirs that are not a high priority in this project. BEG researchers completed 

preliminary data processing and analysis in Laguna Madre, immediately after each airborne mission. 

Investigation of water quality indicated high turbidity levels (> 5 Nephelometric unit, NTU) particularly in 

the south-west and central-east areas of the lagoon (Sections C, D and F), which was a challenge to 

measure depths using ALB technology.  

In 2020, Texas Water Development Board (TWDB) contacted BEG and inquired about processing 

and analysis of Lower Laguna Madre airborne Lidar data sets, supplemented with multi-band satellite 

imagery. Statement of Work (SOW) proposed to address the following research aspects: 

• Document data analysis methods by utilizing the archived satellite imagery and water quality 

data from Texas Commission on Environmental Quality (TCEQ), 

• Support TWDB efforts by analyzing airborne Lidar bathymetry and identify the areas that 

requires multi-beam sonar surveys to build a complete chart mapping of the lagoon, 

• Provide visual and statistical guidance to the understanding of the annual bathymetric changes 

in the lagoon by conducting a temporal analysis with satellite derived bathymetry, 

• Compare and quantify the depth accuracy of airborne Lidar and satellite derived bathymetry,  

• Document and publish results that reflect all relevant contractual efforts.  

 

 

2) Materials and Methods 

 In dynamic coastal and fluvial environments, it is challenging to measure the water bottom in 

whole and with high accuracy using remote sensing methods. In this study, BEG proposed to supplement 

airborne Lidar with satellite derived bathymetry to support the understanding that these technologies 

are complementary, and combination  of data can be an effective to map shallow waters (Ashphaq et 

al., 2021; Monteys et al., 2015; Najar et al., 2022). Literature supports that specific wavelengths such as 

the red-edge (690-730 nm) and the NIR (760-850 nm) have the potential to reveal chlorophyll-a, 

cyanobacteria, suspended and dissolved organic material concentrations in the water column (Bramich 
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et al., 2021; Johansen et al., 2018). Therefore, to understand the influence of water quality on airborne 

Lidar and satellite derived bathymetry, we proposed to study the recorded reflectance and classify the 

surfaces using multi-band satellite imagery.  

 

a) Project location 

 In southern Texas, Lower Laguna Madre is a hypersaline (saltier than seawater) estuary that is 

physio-graphically divided into two subunits (McManus, 1990). Upper Laguna Madre is separated from 

the lower section of Laguna Madre by a land bridge, which is dredged as part of the Gulf Intracoastal 

Waterway (Tunnell and Judd, 2002). Lower Laguna Madre borders Mexico and the lagoon area covers an 

area larger than 800 km2 (310 mi2). The lagoon waters are relatively transparent and shallow in the 

middle and in the northern sections, but water quality is impacted by northerly winds that carry 

sedimentation from shoreline sand dunes and discharging freshwater streams. The lagoon has a unique 

seagrass ecosystem, protected by the Atascosa National Wildlife Refuge area in the north, and by Padre 

Island on the Gulf Coast. Seagrass beds serve as essential nursery areas for various Gulf of Mexico 

species and provide food and shelter for Redhead Ducks (Aytha americana). Because of the essential 

role that seagrass provides in support of fish and wildlife resources, a few studies have attempted to 

map the lagoon using other remote sensing technologies (Dubin et al., 2018; Webster et al., 2016).  

 

 

b) Mapping with airborne Lidar systems  

 

An airborne Lidar system (ALS) measures distances (ranges) for surface mapping purposes and 

includes several instruments on-board. A typical ALS integrates a laser power unit, a scanner mirror, 

transmitting and receiving units, Global Positioning System/Inertial Navigation System (GPS/INS), a 

digitizer, on-board storage, and an operator interface. The laser patterns (swath lines) on the target 

surfaces are generated by the rotation of the scanning mirror; they can be in (a) sawtooth (Z-shaped, 

oscillating), (b) parallel (rotating) or in (c) elliptical (nutating, Palmer) shapes (Figures 3 a-c). On board 

electronics measure the time-of-flight (TOF) duration of a Lidar beam travelling from the transmitter to 

the target surface and back to the receiver (echo). In a pulsed method (Equation 1), R is the slant 

distance, C is the speed of EM in the light form (~3 × 108 m/sec) and ts equals to the TOF duration. In the 

continuous beam method (Equation 2), the range value is derived by comparing the transmitted and 
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received versions of the sinusoidal wave pattern of the emitted beam and measuring the phase 

difference between them (Figure 4). In Equation 2, M is the integer number of wavelengths, and 𝜆 is the 

known value of the wavelength. Delta (𝜆) is the fractional part of a wavelength defined by (
𝜑

2𝜋
) ×  𝜆, 

where 𝜑 is the phase angle.  

 

𝑅 =   (𝐶 ×  𝑡𝑠)/2     (Equation 1) 

𝑅 =  (Μλ + ∆𝜆) 2⁄     (Equation 2) 

 

  

Figures 3 (a-c): Typical ALS scanning patterns: (A) oscillating mirror, (B) rotating and (C) Palmer (nutating) 

scan. Chiroptera emits light beams using a Palmer scanner that has the advantage of measuring the 

sloped water bottoms and the terrain underneath moderate canopied areas (modified after Fernandez-

Diaz et al., 2014). 

 

 

 
Figure 4: Phase comparison is calculated by comparing the transmitted and reflected signals from a 

continuous laser beam (Petrie and Toth, 2018).  
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(a) Airborne Lidar bathymetry  

 

Airborne Lidar bathymetry (ALB) is an active, pulse-based, remote-sensing technology for 

mapping inland reservoirs and shorelines with relatively shallow and transparent waters. A typical ALB 

uses two laser transmitters: a near infrared wavelength (NIR, 1064 nm) to detect the water surface, and 

a green wavelength to detect the bottom and measure the depths (Figure 5). Green wavelength pulses 

(495-570 nm) have the least attenuation traversing through water until reaching and illuminating the 

bottom (Jerlov, 1976). In the water column, the light beam slows, and the amplitude attenuates rapidly 

due to natural refraction and scattering. If a beam does not attenuate, it reflects from the bottom and 

reaches back to the receiver (backscatter). The digitizer records the entire travel in a sinusoidal 

“waveform”, indicating the surface, bottom, and all other major interactions with distinctive amplitude 

changes (Figure 6).  

In Laguna Madre, BEG operated the Chiroptera at approximately 450 m above the water surface 

with a fixed pulse repetition rate of 35 kHz to acquire bathymetry. The NIR scanner acquired 

topographic data at varying rates of 100-300 kHz, – lower repetition rate at the higher altitudes. 

 

 

Figure 5: Representation of electromagnetic spectrum and showing the functional Lidar bathymetry 

optical range using the green wavelength in liquid water. Light pulses are minimally absorbed in the 

blue-green (450-570 nm) spectral region (modified after Beć and Huck, 2019). 
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Figure 6: Conceptual representation of a green wavelength Lidar pulse, recorded as a waveform. Total 

time (Δt) represents the sampling difference between the peaks (Δt = t2 – t1) and defines the time marks 

when a light pulse hits the water surface (t1), travels in the water column, reflects off the bottom (t2) 

and leaves the water column (backscatter). 

 

Using the ALB technology, water depths are calculated by computing the time difference (Δt) 

between the backscattering peaks of surface and bottom. The digitizer calculates the resulting time 

differences and considers variabilities recorded in the backscatter such as the electronic timing delays, 

interactions in the water-column, and the speed of light travelling in air and in water (2.25 × 108 m/s). In 

Equation (3), dm is the distance travelled in meters and n is the refractive index of the water (n=1.33 to 

1.34 at 20° degrees Celsius), Cw is the speed of light in the water, and f is the decoding speed in 

gigahertz (GHz). The value of refraction varies with the water temperature (T), the salinity (S, ‰) and 

the wavelength of the emitted beam (λ). To estimate the variability, we used Lidar data processing 

application tool (Lidar Survey Suite, LSS v2.40) that computes the surface representation using the 

refraction equation (Equation 4, Quan and Fry, 1995). It is also possible to compute the duration of each 

sample (td), by dividing the time difference (Δt) to system digitizer decoding speed (f) (Equation 5). 

Additionally, we can calculate the vertical spacing between the Lidar pulses, traveling in the space and in 

the water column. If we assume the refraction constant in the vacuum (n=1), each pulse spacing equals 

to 0.167 m. In the water, with the addition of refraction constant and the slowing light speed, the pulse 

spacing decreases. If we accept refraction constant as n=1.33, the spacing equals to 0.093 m between 

the pulses. Table 1 presents the technical specifications of Chiroptera, indicating the fundamental 

differences between the NIR and green wavelength scanners. Table 2 illustrates the conceptual 
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computation of pulse spacing and the consecutive depth measurement with each time sampling in the 

water. 

 

𝑑𝑚 =  
𝐶𝑤 ∆𝑡

2𝑛𝑓
     Equation (3) 

𝑛(𝑆, 𝑇, 𝜆) =  𝑛0 + (𝑛1 + 𝑛2𝑇 +  𝑛3𝑇2)𝑆 +  𝑛4𝑇2 + 
𝑛5+𝑛6𝑆+ 𝑛7𝑇

𝜆
+ 

𝑛8

𝜆2 +  
𝑛9

𝜆3   

Equation (4) 

𝑡𝑑 =
1

𝑓
× ∆𝑡     Equation (5) 

 

 

Table 1: Specifications of each Chiroptera ALB scanner. The beam divergence, pulse energy and peak 

power are substantially different among the NIR and green wavelength scanners.  

Wavelength 

(nm) 

EM Peak power 

(kW) 

Pulse energy 

(μJ) 

Pulse 

length  

(ns) 

Beam 

divergence 

(mRad) 

Pulse 

Repetition 

Rate (kHz) 

NIR (1064) pulse 1.5 @250 kHz 30 @50 kHz 

6 @250 kHz 

4 0.5 10-400 

Green (515) waveform 38 > 100 2.5 3 36 

 

Table 2: Computational parameters of measuring depths using the Chiroptera ALB system. In theory, 

depth equals to the two-way traverse time of the light pulse in the water, maintaining the same incident 

angle.  

f 

(GHz) 

Interval  

(i) 

Time tags   

(Δt) 

Duration 

(sec) 

Light in water  

(Cw ,m/sec) 

n Traverse (Wtr) in 

 water column  

(m) 

Depth (Wtr/2) 

(m) 

 

 

 

1.8×109 

 

 

 

5.56×10-10 

1 5.56×10-10  

 

 

2.25×108 

 

 

 

1.33 

0.094 0.047 

2 1.11×10-9 0.187 0.094 

3 1.67×10-9 0.281 0.141 

4 2.22×10-9 0.375 0.188 

5 2.78×10-9 0.469 0.235 

10 5.56×10-9 0.939 0.47 

20 1.11×10-8 1.879 0.94 

30 1.67×10-8 2.819 1.41 
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c) Quality assurance and quality control (QA and QC) 

 

 In the literature, various articles discuss topographic Lidar quality control (QC) procedures and 

measures (e.g., Aguilar and Mills, 2008; Csanyi and Toth, 2007; Vosselman, 2012); however, only a 

limited number of studies experiment with ALB QC methods (Guenther et al., 2000; Mandlburger et al., 

2013; Saylam et al., 2018a; Shin et al., 2016). Because bathymetry - measuring depths and characterizing 

the bottom topography of inland reservoirs and coastal areas - is a dynamic science field, it is critical to 

understand and quantify the QC measures that influence the depth accuracies. QC measures are 

product oriented, and they consist of active processes until project finalization. These measures are 

concerned with the errors caused by the misalignment of the optical instrumentation and the delays in 

the electronics such as digitizer latencies for detecting, decoding, and recording the transmitted and 

received pulses. Further, there are concerns with the pulse energy transit time variations and their 

respective propagation calculations passing through the air/water interface, and laser output 

irregularities caused by voltage variations in the aircraft.  

 Operational errors are caused by mishandling or overlooking of quality assurance (QA) 

protocols, and these include project activities prior and during data acquisition. They are concerned with 

underestimating the variable environmental conditions, use of unreliable ground control network, 

incomplete or inadequate in-situ measurements and lacking overall experience and understanding of 

bathymetric Lidar data acquisition and processing. Although some of these errors can be detected and 

corrected, undetected errors may cause significant positional inaccuracies that may cause repeat 

surveys, delays, and project failures. For instance, at a typical ALB survey altitude of 400 meters, a 

boresight angle bias of 0.05° degrees (less than 1 mrad) would cause 25-cm of height measurement 

error on the target surface.  

 Height accuracy of an ALS derived product is reported with statistical methods such as the 

standard deviation and the root mean square error. Various governing agencies published standards as 

guidelines to report horizontal and vertical accuracies (Flood, 2004; Kaufmann, 2019). According to the 

American Society of Photogrammetry and Remote Sensing (ASPRS), the absolute vertical accuracy for 

DEM products should match or exceed 1.96 times the vertical accuracy class at 95-percentile 

calculations (ASPRS, 2015). For instance, at 10-cm vertical accuracy class, the non-vegetated vertical 

accuracy (NVA) should exceed 19.6 cm (95%). Additionally, United States Geological Survey (USGS) 

published National Map Accuracy Standard (NMAS) and the National Standards for Spatial Data 
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Accuracy (NSSDA) documents to help understand the accuracy standards 1. With the NSSDA, the height 

accuracy of a data set (Accuracy, “z”) is defined by the RMSE(z) of the elevation data in terms of feet or 

meters of ground scale, rather than in terms of the published map’s contour interval. For 1-m contour 

interval maps, we expect to have vertical accuracy of better than 18.2 cm (0.6 ft.) and RMSE values 

indicating less than 9.25 cm (0.3 ft.).  

 According to the International Hydrographic Organization (IHO), standards for ALB surveys are 

generalized for hydrographic measurements, and do not consider the varying environmental conditions 

that influence the quality of data. Therefore, in practice, it is a common norm to expect uncertainties 

with ALB depth accuracies. However, particularly in shallower and relatively transparent waters, ALB 

depths routinely exceed the Order 1a accuracy requirements as set by the IHO (IHO, 2020; Saylam et al., 

2018b). In Lower Laguna Madre, the applicable bathymetric standards should be tight due to the nature 

of the lagoon and the marine vessel traffic that often traverses it. Therefore, BEG applied the Special-

Order standard for accuracy reporting, which is more demanding and stringent. This standard applies to 

shallower waters, and it is concerned with the marine vessel underkeel clearance, critical in berthing 

areas, harbours, areas of fairways and shipping channels.    

 IHO defines the largest total vertical uncertainty (TVU), where the result is a one-dimensional 

quantity that includes all contributing vertical uncertainties. The uncertainty estimates the range of 

values within the true value of a measurement and defined within 95% confidence level. In Equation 6, 

a is the portion of the uncertainty that does not vary with the depth; b is the coefficient which is the part 

of the uncertainty that varies with the depth; and (d) is the measured depth (a = 0.25 meters, and b = 

0.0075). Table 3 outlines the resulting TVU requirements for IHO Survey Special Order at relevant 

hydrographic survey depths. 

 

𝑇𝑉𝑈𝑚𝑎𝑥 = ∓√𝑎2 + (𝑏 × 𝑑)
2
      (Equation 6) 

 

Table 3: TVU requirements at certain depths as defined by the International Hydrographic Organization 

that is applicable to Special Order hydrographic standard.  

Depth (m) 1 2 5 10 20 

Maximum TVU (± 

m) 

0.25 0.25 0.25 0.26 0.29 

 
1 USGS Standards and Specifications: https://www.usgs.gov/ngp-standards-and-specifications/standards-and-specifications 
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i) ALB system calibration  

 

 A total of 448 ground control points were acquired over the taxiway surface at Port Isabel-

Cameron County, TX airport (KPIL) using a Trimble R8 GNSS receiver. These precise GPS survey points 

were used to quantify and adjust the slant range biases of Lidar measurements (Figure 7). Because NIR 

and bathymetric scanners function independently, it was important to compute and correct the 

common offset errors and minimize them. GPS survey points were post-processed to increase their 

positioning accuracy using TxDOT (Texas Department of Transportation) maintained TXLN (Texas Laguna 

Madre, 26° 5” 41.6392’ N, -97° 18” 02.4998’ W) NOAA-CORS (National Oceanic and Atmospheric 

Administration-Continuously Operating Reference System) base station. The standard deviation for 

horizontal adjustment was 2.2 cm, and 3.3 cm for vertical adjustment (Figure 8). Heights calculated in 

this practice were ellipsoidal, native, and true to Lidar data acquisition. All ellipsoidal heights were 

converted to orthometric heights (real world elevations) using the GEOID2012B model to produce the 

Digital Elevation Models (DEM). 

 BEG compared ground GPS survey points to the triangulated irregular network (TIN) heights, 

generated by Lidar returns, using the least-squares statistical method (Savitzky and Golay, 1964). Results 

indicated the goodness-of-fit by computing the R-squared (R2) value (coefficient of determination), 

which indicates the percentage of response variable and represents the closeness of the data sets. 

Additionally, the mean divergence, residuals, and root-mean-square-error (RMSE) values were 

calculated (Table 4). For both scanners, the mean bias and RMSE were less than 3 cm. The correlation 

between the GPS survey points and the Lidar TIN patch heights produced a high degree of confidence 

for both scanners (R2 > 0.95, Figures 9 a, b). However, findings revealed a slight height discrepancy (< 4 

cm) between the scanners, possibly caused by EM energy pulse length and beam divergence 

differences. This difference is visible in Figure 10, where median NIR returns measured surfaces slightly 

higher (3.8 cm) compared to the green-wavelength scanner measurements.  

 

Table 4: Chiroptera Lidar system calibration, slant range (vertical bias) adjustment results. 

Scanner type Number of 

samples 

Data range (m) Median (m) RMSE (m) R2 

NIR 448 0.137 0.025 0.025 0.96 

Green 448 0.168 -0.013 0.028 0.95 
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Figure 7: The red dots illustrate 446 GPS survey points acquired using a Trimble R8 GNSS receiver in the 

taxiway of Port Isabel-Cameron County. Positional measurements were refined by post-processing 

method using the TxDOT maintained TXLN GPS base station.  
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Figure 8: Vertical and horizontal positioning resolution of the static GPS survey points, differentially 

corrected using the TXLN CORS reference station.  

 

 

Figure 9 (a): Green-wavelength scanner, vertical 

height adjustment (GPS survey points versus Lidar 

TIN patch heights, RMSE=0.028 m, R2 = 0.95).  

 

Figure 9 (b): NIR scanner, vertical height 

adjustment (GPS survey points versus Lidar TIN 

patch heights, RMSE=0.025m, R2 = 0.96). 
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Figure 10: Comparison of slant range adjustment for both scanners. Results indicated a median bias of 

3.8 cm between the scanners compared to the Lidar TIN patch heights.  

 

ii) In-situ measurements  

 

  During data acquisition campaign, BEG conducted in-situ measurements that included Secchi 

disk (SD) observations and turbidity sampling. Depths were measured using a Garmin sonar at the 

southern locations of the lagoon, where boat access was feasible (Figures 11 a, b). The sonar unit, 

Garmin 74dv, collected data with single-beam technology (dual frequency) transducer and with an 

effective depth range of 700 m at 77 kHz. It also sampled positional data at a rate of 5 Hz with a built-in 

GPS interface. In the lab environment (UT Austin, Advanced Research Laboratories), BEG researchers 

evaluated the unit to produce depth measurements with standard deviation of 2.7 cm at 11.8 m depth. 

Because lagoon is large, calm, and shallow, rotational adjustment (attitude) or differential processing for 

GPS positions were not considered. In deeper and choppier waters, rotational adjustment may be 

necessary to adjust the depth ranging with the correct angle of scanning.  
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Figure 11 (a): In-situ measurements in Lower 
Laguna Madre. BEG measured depths using a 
single-beam Garmin sonar installed onto a kayak. 

 
Figure 11 (b): Researchers measured water quality, 
transparency, and turbidity in conjunction with the 
airborne Lidar surveys.  

 

 

Because of dynamic nature of the lagoon and ongoing tidal effects, surface heights were not 

expected of high consistency. National Oceanic and Atmospheric Administration (NOAA)2 reported a 

daily average of 23 cm tidal elevation variation in Port Isabel gauge (Station ID# 8779770: latitude 26° 

3.6’, longitude 97° 12.9’), observed in last 19 years. In Port Mansfield (Station ID# 8778490: latitude 26 ° 

33.5’, longitude 97° 25.5’), solely in May 2017, NOAA recorded 44 cm daily variance (Figure 12) and the 

mean height was 0.19 m MSL. Port Isabel gauge recorded 90 cm of variance for the same period, and 

the mean height observed was 0.12 m MSL (Figure 13). Therefore, especially in the southern parts of the 

lagoon, greater disparity of tidal effects was expected, influencing the surface heights. The amount of 

observed tidal influences are presented in Table 5, corresponding to sensing time of each satellite image 

that was used in this study.  

  As part of the project, additional depth measurements were provided by Texas Commission on 

Environmental Quality (TCEQ), through the Surface Water Quality Monitoring (SWQM) program. BEG 

selected five SWQM reference stations that were maintained actively and scattered throughout the 

lagoon for uniformity (Table 6). Figure 14 illustrates these reference station locations (TCEQ IDs: 13446, 

13447, 13448, 13449, 14870), and BEG observed in-situ locations for depth measurements. There were 

three areas of clustered In-situ locations; Area #1 has shallow and mainly transparent waters, Area#2 

has intermittent water quality and depth, and Area#3 has the lowest water quality with deeper sections.  

 

 
2 NOAA: Superseded benchmark data sheets: https://tidesandcurrents.noaa.gov/ 
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Table 5: Observed tidal effects at Port Mansfield (ID# 8778490) and Port Isabel (ID# 8779770) stations at 

17:00 UTC, corresponding to the satellite imaging acquisition. These observations were used to adjust 

the depths respective to their bathymetric mapping.  

Gauge Tidal observation (m) 

 05/12/2016 06/16/2017 05/17/2018 05/27/2019 

Port Mansfield, TX 0.35 0.20 0.15 0.32 

Port Isabel, TX 0.53 0.40 0.52 0.46 

 

 

Table 6: In-situ depth measurements used in the SDB analysis, as recorded by TCEQ and BEG. These 

locations are illustrated on a map, in Figure 14.  

Sentinel-2A 1LC 
imagery 

Sonar / SWQM ID UTM Easting (m) UTM Northing (m) Depth (m) 

2016 TCEQ-13446 680866.0 2892509.6 0.95 

2016 sonar 677419.2 2889228.2 1.59 

2016 TCEQ-13447 667952.5 2917386.8 0.91 

2016 sonar 681075.6 2889328.0 1.22 

2017 sonar 682282.8 2890040.0 0.88 

2017 sonar 680624.6 2888914.0 0.94 

2017 sonar 681989.9 2891306.0 0.74 

2017 sonar 681723.8 2891260.0 0.90 

2017 sonar 681101.4 2890945.0 0.99 

2017 sonar 681434.5 2890731.0 0.91 

2017 sonar 681985.0 2890432.0 0.94 

2017 TCEQ-13449 652431.3 2963357.0 1.46 

2017 TCEQ-13447 667952.5 2917386.8 0.73 

2018 Sonar 681075.6 2889328.4 1.22 

2018 Sonar 677419.2 2889228.2 1.59 

2018 TCEQ-13449 652431.3 2963357.0 0.98 

2018 TCEQ-13447 667952.5 2917386.8 1.50 

2019 TCEQ-13449 652431.3 2963357.0 1.10 

2019 TCEQ-13447 667952.5 2917386.8 1.64 

2019 sonar 681075.6 2889328.4 1.22 
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Figure 12: Port Mansfield (ID# 8778490), TX NOAA tidal gauge showing 24-hours of surface height 

variations. Blue-dashed line indicates the mean tidal height as 0.19 m observed for entire month of May 

2017. 

 

 
Figure 13: Port Isabel (ID# 8779770), TX NOAA tidal gauge showing 24-hours of surface height variations. 

Mean tidal height observed was 0.12 m for May 2017.  
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Figure 14: Reference in-situ locations (TCEQ-stations and BEG-observations) and sonar depth 

measurements that were used to analyze satellite imagery. Area #1 (survey date: 05/01/2017) has the 

lowest and Area #3 (survey date: 05/12/2017) has the highest turbidity content (Appendix B).  
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iii) Vector data analysis  

 

 BEG verified the Lidar bathymetry with sonar and in-situ depth measurements (TCEQ and BEG-

observed) before comparing the findings to satellite derived bathymetry findings. The varying 

environmental conditions were expected to have an impact on the quality and completeness of the 

Lidar measurements. For comparison purposes, with vector data sets, because point-to-point (return) 

correspondence is not assumed (Habib et al., 2009), the Delaunay Triangulation algorithm (B Delaunay, 

1932) was used to create surface patches of TIN. There are other algorithms to construct TIN surfaces 

(e.g. Distance ordering, Region growing); however, because of superior uniform modelling, automation 

capabilities and statistical consistency with previous QC applications (Saylam et al., 2018b; Zhu et al., 

2008), the Delaunay Triangulation algorithm was preferred.  

 A TIN surface is a vector-based model and represents the surface morphology by triangulating a 

group of points. The surface is constructed from a large network of connecting and non-overlapping 

triangles. The TIN construction of a Delaunay triangulation follows building of “dual” layer Voronoi 

diagrams of a given vertex set (Figure 15 a). The circumcenters of Delaunay Triangulation are the 

vertices of the Voronoi diagram (Figure 15 b). Each vertex of the triangulation is surrounded by a 

Voronoi cell, which consists of all planar points that are closer to the selected vertex. Two vertices are 

connected by their edge in the associated Delaunay Triangulation if the cells in which the vertices are 

bordering each other. The algorithm maximizes the smallest angles of triangles in the iteration process 

by defining an empty circumcircle. Figure 16 a illustrates the concept where the algorithm selects the 

shortest distance of all points (h) to minimize the interior angle of all triangles, and the triangles are 

equiangular.  

 The vector Lidar data sets were used to construct the TIN surface patches (Surface 1, Figure 16 

b) by defining a set of circumcircles (e.g., 1 m) and the averaged TIN heights were compared to the 

heights measured by another survey method (e.g., sonar and GPS) (Surface 2, Figure 16 c). The 

algorithm picks the returns that register in the defined proximity (e.g., dS1i = 1 m), and excludes the 

returns that register at slopes greater than defined (e.g., α=45°) angle. The vertical threshold (e.g., h = 

0.5 m) is adjusted to prevent the algorithm picking up returns from vegetation or other erroneous 

features that may represent heights incorrectly.  

 A text editor (e.g., Notepad++, UltraEdit) and Microsoft Excel were used to organize the vector 

data sets for analysis with MATLAB R2017b and multiple variations of threshold distances and slope 
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angles were input to observe optimum results. In more detail, vector data analysis included the 

following practices: 

• Compared the GPS survey points to Lidar measurements and adjusted ALB slant range biases. 

Analyzed vertical height biases for each of Chiroptera scanners. 

• Compared sonar depths to the Lidar bathymetry and investigated the accuracy of the Lidar 

measurements. 

• Compared satellite derived bathymetry in certain in-situ locations to Lidar bathymetry and examined 

the depth differences. 

• Prepared statistical results such as standard deviation, mean (average) value and RMSE, and if 

applicable, the goodness-of-fit between data sets using linear or quadratic regression by producing 

R-square values (R2) of all comparisons. 

 
Figure 15 (a): Connecting the centres of the 

circumcircles to produce the “dual” layer Voronoi 

diagram (in dashed blue lines). 

 
Figure 15 (b): The Delaunay Triangulation with all 

the circumcircles and their centers indicated in 

red. 

 

 
Figures 16 a-c: Conceptual representation of point-to-patch relationship and vector data comparison 

using the Delaunay Triangulation algorithm. 
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d) Lidar data acquisition 

 

 Several airborne campaigns were conducted over Laguna Madre with a Partenavia P68-C (N88N) 

fixed-wing aircraft (Figures 17 a, b). Data acquisition campaign was tedious and challenging because of 

intermittent weather and tidal conditions that influenced the depth, water quality and surface 

choppiness. An area of approximately 1,600 km2  were covered that included bank-to-bank channel 

bathymetry of the lagoon (Sections B and D), South Padre Island shoreline (~200 m into the Gulf Coast, 

Section E), the immediate lagoon topography (Sections C and D), and the southerly-located inland water 

reservoirs (Section F). Table 7 provides a summary of Chiroptera settings used during airborne survey 

missions; and Appendix A provides a detailed day-by-day data acquisition information and Figure 

Appendix A-1 illustrates the survey sections. In conjunction with ALB data acquisition, BEG conducted 

in-situ campaigns to quantify the water quality, transparency, and depths in the southern part of the 

lagoon, where the boat access was granted and feasible (Appendix B). 

 

Table 7: Chiroptera system settings used for Lidar data acquisition in Lower Laguna Madre survey. 

Item NIR wavelength Green wavelength 

Pulse repetition rate 100-300 kHz  36 kHz  

Survey altitude (AGL) 400-600 m 

Lidar swath and overlap 250-300 m / 30% overlap 

Aircraft survey speed 110-130 knots 

Camera overlap 20% forward, 30% side 

Camera filter and GSD Natural colour (RGB) / 6 cm/pixel 

Lidar point density 10 points/m2 (+side overlap) 2 points/m2 (+side overlap) 
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Figure 17 (a): Partenavia P68-C (N88N) in 

Port Isabel, TX airport.  

 
Figure 17 (b): BEG researchers are installing the AHAB 

Chiroptera Lidar system and other required equipment in 

the Partenavia P68-C aircraft. 

 

 

e) Satellite imaging analysis  

i) Imagery downloads and preparation  

 

 Satellites with high-resolution imaging sensors can cover large areas with detail, allowing 

visualization of various features. In this project, BEG researchers downloaded archived imagery from the 

Planet Explorer online database3. The database enables searching and downloading of archival imagery 

and contains a multitude of high-resolution data acquired by various sensors, supplying a global 

coverage. Because Laguna Madre is a dynamic estuary, and airborne Lidar data sets were acquired in 

May and June, for temporal study and consistency purposes, researchers downloaded imagery solely 

acquired in May and June of 2016-2019. Because of several in-situ measurements were blocked by 

clouds, 2020 imagery were excluded.  

 The European Space Agency (ESA) owns and operates the Sentinel-series satellites and currently 

manages two satellites in the orbit: Sentinel-2A and 2B. These satellites complete a full orbital cycle at 

every 10 days, and they acquire imagery to support the various industries and applications such as 

agricultural monitoring, emergency and disaster management, land cover classification and water 

 
3 Planet Explorer: https://www.planet.com/ 
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quality monitoring. Sentinel-2A’s multispectral image sensor captures and records target surfaces with 

13 spectral bands. Depending on the wavelength, these bands have a spatial resolution of 10, 20 and 60 

m. The payload data ground segment (PDGS) processes Level-1C (L1C) products and outputs 

radiometrically and geometrically corrected top of atmosphere (TOA) multispectral images. L1C 

products are composed of 100 x 100 km2 tiles, and they include cloud masks and European Centre for 

Medium Range Weather Forecasts (ECMWF) information (total column of ozone, total column of water 

vapour and mean sea level pressure). Every L1C product contains information with wavelength bands 1 

to 8A (442.7 to 864.7 nm). In this study, Bands 4, 5 and 8 were essential because of their capability to 

prevail differences in reflectance values among water and terrain, emphasizing the vegetation boundary 

between land and water (Mondejar and Tongco, 2019). The sampling resolution varies with each band, 

10-20 m per pixel for the Bands 4-8A. Acquisition time, date, tile numbering, ground sampling resolution 

and other specifics of the downloaded imagery are provided in Table 8. 

 

Table 8: Details of Sentinel-2A L1C images used in the Lower Laguna Madre study. 

 
Date Sensing Time (UTC) Tile Sun 

elevation 
(degrees) 

Sun azimuth 
(degrees) 

Cloud coverage (%) 

12/05/2016 17:11:44 T14RPQ 72 113.6 20 

12/05/2016 17:11:44 T14RPP 72.3 111.1 24 

16/06/2017 17:15:05 T14RPQ 72.9 96.9 6 

16/06/2017 17:15:05 T14RPP 73 94 6 

17/05/2018 17:10:16 T14RPQ 72.4 110.5 0 

17/05/2018 17:10:16 T14RPP 72.8 107.9 0 

27/05/2019 17:16:29 T14RPQ 73.1 104.5 25 

27/05/2019 17:16:43 T14RPP 73.3 101.6 16 

 

In sequence, BEG performed the following steps to download and process satellite imagery of Laguna 

Madre: 

- Investigated and determined that Sentinel-2 products suited the project requirements because 

of their spatial resolution, lower cloud coverage and higher temporal variability compared to 

other imagery available (e.g., RapidEye, Landsat-8).  

- Verified that Sentinel 2- L1C products do not require additional radiometric calibration, images 

are calibrated at top of the atmosphere.  
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- Mounted a temporal constraint in the Planet Explorer query screen to determine the most 

viable data sets (e.g., free of clouds, atmospheric distortions) and selected suitable imagery of 

the lagoon. 

- Downloaded two tiled imageries for each year to capture the entire lagoon, with Bands 1-8A 

(tiles T14RPQ and T14RPP) and verified the meta data and georeferencing information for 

further suitability in the study, 

- Used ENVI v5.5 Layer Stacking Tool to layer Bands 1-8A. This tool manipulates bands from 

georeferenced images of diverse sizes and re-projects the bands to a standard spatial grid to 

produce one multi-band file. 

- Used ENVI’s Seamless Mosaic workflow to piece together the two tiles into one image.  

- Mounted the mosaic data set into ENVI’s Subset Data from Region of Interest (ROI). A shapefile 

of the Laguna Madre ROI was created in Google Earth, then uploaded into ENVI v5.5. 

- Applied an additional spatial constraint to mosaicked tiles to exclude surrounding land and 

manufactured features to emphasis on the water body.  

  

ii) Reflectance  

 

 Analysis of EM radiation (reflectance) recorded of target surfaces may supply essential 

information about the water depth, water quality, and other surface properties. The visible and NIR 

spectral wavelengths can distinguish the varying concentration of suspended particulate matter in the 

water (Gernez et al., 2015). According to Sebastiá-Frasquet et al. (2019), using the Sentinel-2A L1C Band 

5 (705 nm), it is possible to estimate the water quality within 20 m of spatial resolution in shallow 

lagoons with average depth of 1 m, which is similar to Laguna Madre depths.  

ENVI v5.5 Spectral Profile Tool was used to analyze the radiance recorded at each pixel to 

predict the surface reflectance. The principal purpose was to predict the water quality and its influence 

on Lidar and satellite bathymetry; however, the reflectance values of each pixel helped us to determine 

the nature of the surface analyzed (e.g., vegetation, high or low water quality) and we were able to 

generate polygon masks separating the lower reflectance areas for mounting into ENVI’s SPEAR satellite 

derived bathymetry (SDB) analysis tool. The areas where the reflectance values represented cloud 

coverage, which produced a greater value compared to cloud free locations were removed. Further, five 

refence locations were selected (maintained by TCEQ) that were visible by all imagery and mounted 

these locations to ENVI Spectral Profile tool to analyze the radiance recorded by Band 4 (665 nm) and 
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Band 5 (705 nm). The purpose was to investigate the spectral radiance differences at the same location 

with each year’s imagery. These reference locations are illustrated previously in Section 2-h (Figures 15 

a-d). 

To plot the reflectance analysis results, ENVI’s Iterative Self Organizing Data Analysis (ISODATA) 

clustering algorithm was used. This is an unsupervised classification tool that iteratively clusters pixels to 

the nearest class with relatively good accuracy (Ahmad and Sufahani, 2012). The algorithm does not 

require a priori knowledge of the surfaces and continuously computes the mean values by reclassifying 

the pixels until the alteration between the pixels is less than the set threshold (2%) or the maximum 

number of iterations (default, 10) is achieved.  

Further, a Normalized Difference Water Index (NDWI = (green-NIR)/(green + NIR)) analysis was 

conducted to build a surface map by mounting the areas of interest, using the green and NIR bands 

(Wang et al., 2019). Typically, NDWI analysis can detect moisture changes in the vegetation (Gao, 1996), 

and in this study, the formulae was used to exclude cloudy and vegetated areas as identified by the 

ISODATA analysis. The band reflectance was normalized (0-1) using the ENVI Band Math tool’s 

recommended reflectance multiplicative band scaling factor. The scaling factor normalizes the images to 

reduce radiometric differences across multi-temporal imagery from non-surface effects (de Carvalho et 

al., 2013).  

 

iii) Bathymetry 

 

Satellite derived bathymetry concept includes active and passive spaceborne sensors to map the 

shallow water habitats. In this study, SDB stands for passive, optical-imaging based bathymetric analysis.  

Water-leaving radiance is the backscatter upwelling after traversing the air/water interface and 

recording subsurface volumetric and water bottom information. Accurate estimates of water depth with 

optical-imaging can be limited by numerous factors such as atmospheric influences, water quality and 

depth. Previous studies indicated that Band 4 (665 nm) can distinguish the chlorophyll-A maximum 

absorption, and Band 5 (705 nm) relates to the vegetation monitoring and turbidity patterns in shallow 

lagoons (Delegido et al., 2011; Sebastiá-Frasquet et al., 2019). For the purposes of optical-imaging 

bathymetry, Stumpf et al. (2003), developed the bottom albedo-independent bathymetric algorithm 

that distinguishes different bottom types such as sand, rock and vegetation with an effective mapping 

up to 15 meters in ideal atmospheric and water conditions (Favoretto et al., 2017).  
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 The Spectral Processing Exploitation and Analysis Resource (SPEAR) algorithm in Relative Water 

Depth tool in ENVI v5.5 allows analysts to predict water depths using passive SDB and relevant 

photogrammetric methods. The algorithm requires the visible (blue, green, red) and NIR bands; which 

correspond to Sentinel-2 bands 2, 3, 4, and 8A. According to Darama et al. (2019), SPEAR algorithm can 

distinguish bottoms (vegetation versus sand) at the same depth. In-situ depth measurements were 

needed to generate absolute results (Table 6) when subset regions were created by the SPEAR 

algorithm. Depths produced by SPEAR algorithm were compared to Lidar bathymetry to quantify the 

accuracy and useability for chart mapping of the lagoon.  

 

 

3) On-site analysis  

 In 2017, BEG researchers conducted data processing activities in the field, immediately after 

completing each data acquisition campaign. Because bathymetric Lidar data processing is significantly 

different and complicated compared to the NIR data processing, decimated vector data sets were 

output to verify coverage and depth measurements. In Laguna Madre, survey area included varying 

terrain (dunes, inland water reservoirs, vegetation, mudholes and manufactured structures) and the 

lagoon water differed in clarity and depth. Ongoing tidal conditions and shifting high winds affected the 

surface heights and the absolute depths.  

 On site, BEG processed three types of airborne Lidar data sets: water surface, bottom, and 

topography. For water surface indication, Lidar Survey Suite (LSS v2.4) algorithm produced two classes 

of bathymetric data sets; Class 0 combines NIR and green-wavelength returns, and Class 5 is derived 

solely from the green-wavelength. For depth measuring, LSS algorithm output returns with distinctive 

peaks as Class 7 (standard) and classifies returns with less significant peaks as Class 10 (enhanced). AHAB 

developed the enhanced algorithm to increase the depth measuring capability by filtering the weaker 

bottom return peaks created by low or moderate levels of turbidity.  

Previously, in the Colorado River study (Saylam et al., 2017b), where water was deeper (up to 10 

m) and relatively transparent, BEG observed depth measuring capability to increase by a smaller margin 

(9.2%) using the enhanced depth classification algorithm. In Laguna Madre, BEG measured varying 

turbidity content where in-situ measurements were conducted (Appendix B). Analysis showed 

substantial increase in depth measuring capability (up to 41%, Table 9) where water was shallower than 
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2 meters. The bottom was visible at all sampling locations in Area #1; however, Areas #2 and #3 had 

lesser transparency due to the increased levels of turbidity (Figures 18 a, b). On-site analysis indicated a 

reduced correlation between Classes 5 and 7 with increasing turbidity content (Table 10). Naturally, 

escalating levels of turbidity scattered the light beams, producing a less reliable surface representation.  

 

Table 9: Water-bottom output (Class 7 and 10) comparison to sonar depths at BEG-observed in-situ 

locations. 

Area Number of returns  

(Class 7 / 10) 

Mean sonar 

depth (m) 

Mean Lidar depth (m)  

(Class 7 / 10) 

SD (m)  

(Class 7 /10) 

Depth measuring 

improvement (%)  

1 256 / 130 1.40 1.28 / 1.57 0.14 / 0.23 23 

2 381 / 140  1.43 1.42 / 1.75 0.17 / 0.27 20.2 

3 551 / 272 1.84 1.3 / 1.84 0.62 / 0.63 41.2 

 

Table 10: Average turbidity and water-surface output (Class 0 and 5) comparison. Increasing turbidity 

levels impacted the correlation and QC algorithm produced fewer correlation.  

Area Mean turbidity 

(NTU) 

Number of returns 

(Class 0 / 5) 

Median difference (m) 

(Class 0 to 5) 

RMSE (m) 

(Class 0 to 5) 

R2 

1 2.7 528 / 173 -0.07 0.03 0.936 

2 8.6 907 / 653 -0.09 0.06 0.651 

3 10.5 806 / 420 -0.11 0.08 0.319 
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 Figure 18 (a): Transparent and shallow area, aerial 

imagery (Area #1). Bottom properties are clearly 

visible (mix of vegetation and sand). 

 
Figure 18 (b): High turbidity with horizontal 

floating vegetation as captured by aerial 

photography (Area #3). 

 

 

4) Results 

a) Reflectance  

   

 Six ISODATA classes of reflectivity (low, mixed, moderate-low, moderate-high, high and 

unclassified / cloud) were generated as an output of the Sentinel-2A 1LC 2016, 2017, 2018 and 2019 

imagery, which was in line with the Alaskan North Slope study (Saylam et al., 2017a). The classifications 

were based on 2% of spectral variance between the recorded values and results omitted high turbidity 

and unclassified/cloud areas to generate the masking polygons. Tables 11 and 12 present the 

reflectance values recorded at selected TCEQ reference stations and Figure 19 illustrate the average 

reflectance values recorded at these locations. Table 13 provides the pixel count percentages of each 

image because of ISODATA classification.  

The final ISODATA classifications and corresponding maps were produced in raster format 

(GeoTIFF) using ArcMap 10.8.1 (Figures 20 a-d, Appendix C, Figures C-1 to C-4). The reflectance maps 

demonstrate the dynamic nature of the lagoon by indicating the variations in the surface water quality. 

Following statements can be assumed by examining the findings: 
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• In 2016, the average reflectance values (Bands 4 and 5) were the lowest, therefore, the 

overall surface water quality was higher.  

• In 2016, the moderate-high and high reflectance classes indicated the lowest pixel counts 

(3.54%), confirming higher water transparency and quality, particularly in the southwestern 

parts of the lagoon.   

• In 2017, the low reflectance classes were least significant (1.05%) while the mixed 

reflectance class registered (6.02%) the most substantial.  

• In 2018, turbidity concentration was higher, leading to lower pixel count in moderate-high 

and high reflectance classes (5.22%). Overall water quality has increased visibly in the 

northern parts of the lagoon.   

• In 2019, the low reflectance class registered the highest pixel count (4.33%), resulting in the 

most suitable conditions for satellite bathymetry.  

 

Table 11: Surface reflectance values (0-1) registered with Sentinel-2A L1C Band 4 (665 nm) at TCEQ 

maintained in-situ locations. “N/A” indicates cloud coverage. 

In-situ location,  

TCEQ ID 

Recorded reflectance (0-1) Band 4 

 2016 2017 2018 2019 Average Standard Deviation 

1-13449 N/A 0.112 0.111 0.133 0.119 0.012 

2-13448 0.123 0.134 0.143 0.145 0.136 0.010 

3-13447 0.138 0.117 0.122 0.111 0.122 0.011 

4-14870 0.151 N/A 0.136 0.171 0.153 0.017 

5-13446 0.159 0.144 0.117 N/A 0.140 0.021 

 

Table 12: Surface reflectance values (0-1) registered with Sentinel-2A L1C Band 5 (705 nm) over TCEQ 

provided in-situ locations, 2016-2020. “N/A” indicates cloud coverage. 

In-situ location,  

TCEQ ID 

Recorded reflectance (0-1) Band 5 

 2016 2017 2018 2019 Average Standard Deviation 

1-13449 N/A 0.098 0.096 0.122 0.106 0.015 

2-13448 0.111 0.115 0.128 0.134 0.122 0.010 

3-13447 0.131 0.118 0.127 0.114 0.123 0.008 

4-14870 0.136 N/A 0.116 0.149 0.134 0.017 

5-13446 0.138 0.122 0.103 N/A 0.121 0.018 
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Table 13: Pixel count in percentages (%) of each imagery as classified by ENVI’s ISODATA algorithm. 

“N/A” indicates the areas outside the lagoon. 

Imagery Reflectance pixel count (%) 

 Low Mixed Moderate-low Moderate-high High Unclassified/ 

Cloud 

N/A 

2016 4.16 5.79 6.11 2.97 0.58 0.09 80.31 

2017 1.05 6.02 5.58 3.18 1.05 0.04 83.07 

2018 3.94 5.68 5.51 4.08 1.14 0.14 79.50 

2019 4.33 4.91 5.37 2.66 1.18 0.09 81.47 

 

 

Figure 19: 2016-2019 Sentinel-2A L1C, Bands 4 and 5, reflectance recorded at in-situ locations (1-5, 

TCEQ).  
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Figures 20 a-d: Reflectance analysis as recorded with Sentinel-2A L1C Band 5, classified using ENVI v5.5 

ISODATA algorithm (Maps: Appendix C).  

(A) 2016 (B) 2017 

(C) 2018 (D) 2019 
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f) Lidar bathymetry 

 

 In this study, Lidar bathymetry data sets are tiled and delivered in 2x2 km files for visualization 

simplicity and data management purposes. GPS (ellipsoidal) heights were converted into real world 

(orthometric) elevations and depths were output in metric units, excluding the areas that registered 

above 0-meters. Figure 21 is the north end of the lagoon, illustrating the water bottom details, where 

Lidar bathymetry is draped over 60-cm National Agriculture Imagery Program (NAIP) imagery. The figure 

includes the template that demonstrates the UTM location of each tiled data set respective to its 

northeastern corner.  

 Because of the dynamic nature of the lagoon and its diverse morphology, varying levels of water 

quality, tidal influence and surface choppiness influenced ALB depth measuring performance, especially 

at southwestern and northern sections. At certain locations, ALB was not able to measure the bottom of 

the lagoon; therefore, BEG suggested TWDB to outsource hydrographic surveying to measure bottoms 

of missing sections (e.g., southwest lagoon) using multi-beam sonar. Figure 22 illustrates three sections 

of the lagoon with low water quality that affected depth mapping using ALB. 

 

 

Figure 21: Depth illustration in the north end of the lagoon. Lidar bathymetry draped over 60cm GSD 

NAIP imagery and grid tiling template.  
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Figure 22: Sections of Lower Laguna Madre with higher turbidity concentration in May 2017. These 

sections were suggested for sonar mapping to build a complete hydrographic mapping of the lagoon.  

 

 Prior to comparing Lidar bathymetry to sonar depths, sonar measurements were adjusted with 

observed tidal heights using the gauge in Port Isabel. For instance, the gauge recorded 0.39 m surface 

height variance during the sonar survey conducted at 05/01/2017, 0.31 m in 05/05/2017, and 0.52 m in 

05/12/2017. In this analysis, because of their better depth performance, Class 10 data sets were used. 

Findings indicated that Lidar measured deeper in areas with higher water quality (Area #1), and sonar 

recorded deeper at turbid areas (Area #2), which was an expected result (Table 14). Further comparison 

of Lidar bathymetry to sonar depths using the QC algorithm revealed robust results, and overall, the 
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depth accuracies exceeded the Special-Order standards set by IHO (TVU < 0.26 m, shallower than 10 m). 

The QC findings reflected a polynomial fit because the least-squares method minimized the variance of 

the unbiased estimators of the coefficients, under the conditions of the Gauss-Markov theorem (Shaffer, 

1991). Further, we can accept the following statements:  

 

• In Area#1, initially, the QC algorithm returned poor correlation efficiency of 26% (1688/6391) 

matching sonar depths to Lidar bathymetry. The distance of circumcenter triangle coverage 

(default dS1i = 1 m) of Lidar TIN patches was adjusted to 2 m, height (dZ) tolerance to 25 cm 

(default=10 cm) and the slope angle was decreased (default=45°) to 30-degrees. As a result, the 

algorithm efficiency increased, and the matching rate improved (80%). At Area #1, where water 

column is shallow (mean depth < 1 m) and relatively transparent (mean turbidity=2.7 NTU), the 

average depths for Lidar/sonar were 0.94/0.9 m and the deepest location was 1.96 m (Figure 

23). 

• In Area#2, where turbidity level increased (mean turbidity = 8.6 NTU), the QC algorithm 

matched fewer sonar depths to Lidar bathymetry (39%). The mean ALB was 1.02 m and mean 

sonar depth was 8 cm deeper (1.10 m). The regression result was considerably poor (R2 =0.34).  

• In Area#3, where poor water quality was observed (mean turbidity=10.5 NTU), Lidar returns 

were scattered, and amplitudes were not sufficient to measure the lagoon bottom. With default 

parameters, the QC algorithm produced unreliable results; therefore, tighter distance values 

were input to include only legitimate returns. Expectantly, the correlation efficiency dropped to 

20%, increasing the regression result (R2=0.78). Median ALB was 1.05 m, where sonar measured 

deeper at 1.23 m (Figure 24).  

 

Table 14: Sonar depths versus Lidar bathymetry (Class 10) comparison at different in-situ locations.  

Location Tidal 

adjustment 

(m) 

Mean 

turbidity  

(NTU) 

Algorithm triangle (m)/ 

dZ tolerance (m)/ 

slope (degree) 

Matching 

(%) 

Difference 

(Lidar-

sonar, m) 

RMSE 

(m) 

R2 

Area 1 0.39 2.7 2/0.25/30 80 0.04 0.15 0.69 

Area 2 0.31 8.6 2/0.25/30 39 -0.08 0.15 0.34 

Area 3 0.52 10.5 1/0.5/30 20 -0.18 0.21 0.78 
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Figure 23: In Area #1, the relationship between ALB and sonar depths produced a 2nd-degree polynomial 

linear regression (R2=0.69), which is indicative of increasing noise in deeper water column. Lidar 

measurements were slightly deeper and mean difference was 4 cm. 

 

Figure 24: In Area #3, variable and higher turbidity levels were observed that scattered the Lidar returns. 

QC algorithm matched fewer measurements (20%) because of tighter thresholds. The mean difference 

increased to 18 cm; however, the regression improved (R2=0.78).  

 

 BEG researchers output vector Lidar surface data sets (Class 0: NIR and green wavelength 

returns) and created DEM of the lagoon (1-m grid sampling) to visualize the water surface height 

differences occurred naturally during the data acquisition campaign. The purpose of providing surface 
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ALB data sets is to illustrate the tidal influences that impacted the water column depths and inform 

hydrographic analysts to calculate the locational depths. The accuracy of measuring the bottoms is not 

impacted by the tides, rather the depths. In this study, ALB surface data sets revealed surface height 

differences of 0.84 m (lowest=-0.28 m, highest= 0.56 m). The mean surface height was 0.04 m, and 

standard deviation was 0.18 m throughout the airborne survey duration. Findings were in line with 0.9 

m tidal influence that was observed at Port Isabel gauge, in May 2017. Especially in the southeastern 

sections of the lagoon, tides were prevalent, and influenced the overall bathymetric mapping efforts 

(Figure 25).  

 

 

Figure 25: Water surface heights difference because of tidal influences. The mean surface height was 

0.04 m, and standard deviation of 0.18 m for all surface height measurements.  
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 For the lagoon depths and bottom representation, ALB data sets were output in three separate 

classes: Class 6 for shallow and immediate returns, Class 7 for ‘regular’ bathymetric returns and Class 10 

for ‘enhanced’ bathymetric returns. In this study, BEG provided ALB data sets in whole, and with 

separate data classes, and each class representing varying properties of the water surface and the 

bottom. For instance, Class 10 classification algorithm picks a weaker peak in the waveform as the 

return where it was omitted by Class 7 algorithm since the amplitude registered lower than threshold 

because of excessive turbidity or depths. Class 6 returns are not reliably indicative of bottoms, so they 

were not used in the depth assessment.  

 Analysis of ALB data sets revealed that in-situ areas differ slightly in-depth characteristics (Table 

15). Area#1 registered the deepest location, and Area#2 had greater average depth. Because of lesser 

water quality, in Area#3, 28% of all depths were shallower than 30 cm, which caused Lidar beams to 

scatter immediately beneath the surface (Figures 26 a-c).   

 Chiroptera measured the lagoon at deepest 4.25 m (UTM N 663160, E 2971873; N 668825, E 

2949235) and the depths excluded from computations where heights were greater than -0.01 m. Lidar 

bathymetry indicated the mean depth of the lagoon at no more than 0.61 m, where 48% of all depths 

were shallower than 0.4 m, and only 1.07% of measurements were deeper than 2.88 m (Figure 26-d). 

However, this may not represent the true lagoon depths because of the limitations of ALB technology in 

varying environmental conditions. Particularly in moderate-turbid locations, Lidar beams penetrated the 

water-column slightly, and returned to the receiver immediately before they attenuated, registering 

very shallow depths that may not reflect actual depth. However, depths measured greater than 0.4 m (> 

51%) have higher probability to be accurate and represented the actual lagoon bottom. Figure 27 

presents the bathymetry of entire lagoon, where ALB technology was successful to map the bottom 

particularly in the northeast and southwest sections.  

 

Table 15: ALB analysis results of in-situ areas and the entire lagoon.  

Location Raster cell size 

(m) 

Minimum 

depth (m) 

Maximum 

depth (m) 

Mean depth (m) SD (m) 

Area#1 1 0.01 3.35 0.86 0.25 

Area#2 1 0.01 3.31 1.12 0.27 

Area#3 1 0.01 2.93 0.90 0.58 

Laguna Madre 1 0.01 4.25 0.61 0.67 
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Figure 26-a: Area#1, ALB 

results. The deepest area 

was 3.35 m, and the 

average depth was 0.9 m. 

24% of depths were 

greater than 1 m.  

 

 

 

Figure 26-b: Area#2, ALB 

results. Average depth 

was 1.12 m and 69% of 

all measurements were 

deeper than 1 m.  

 

 

Figure 26-c: Area#3, ALB 

results. Depth measures 

were impacted by the 

poor water quality. 55% 

of measurements were 

deeper than 0.9 m.    
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Figure 26-d: ALB analysis 

of entire lagoon. Mean 

depth was 0.61 m. 

42.65% of all depths 

were in between 0.4 and 

1.2 m.  
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Figure 27: Lidar bathymetry of Lower Laguna Madre. Particularly in the transparent areas of the lagoon 

and in the northern Gulf coast shoreline, Lidar measured the bottom with high detail, where 51% of the 

bottom were measured deeper than 0.4 m.  
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g) Satellite derived bathymetry (SDB) 

 

 BEG investigated satellite derived bathymetry in Laguna Madre using multi-band imagery of 

multiple years. Depth maps were generated using ENVI v5.5’s SPEAR algorithm where different in-situ 

measurements were input for each year. Results revealed discrepancy with depth ranges (1.58 to 2.54 

m), and standard deviation varied moderately (0.35-0.46 m, Table 16). For the analysis, SDB results of 

2017 imagery was used as the principal QC metric (benchmark) and results were compared to airborne 

Lidar bathymetry, where data acquisition dates of both platforms overlapped (Table 17). However, for 

study purposes, in Area #1, the depth difference was investigated of all imagery (2016-2019). Because of 

20-m coarse grid spacing of SDB, the default QC algorithm threshold distance was extended (2-5 m) to 

include more measurements in the computations. Additionally, the tidal influence was considered with 

each satellite imagery corresponding to sensing time and depths were adjusted. 

 Findings revealed varying depth differences for each year. For instance, in 2017, SDB indicated 

deeper (mean = 7 cm), and conversely, in 2016, Lidar measured deeper (mean=21 cm). Because of the 

fundamental differences in the measuring technologies (e.g., active versus passive remote sensing, 

platform height, grid sampling); this amount of variation was expected. However, high RMSE values (21-

35 cm) indicated correlation issues between the measurements. The shallow depths, varying surface 

and bottom properties and water quality were the major sources of bathymetric difference between the 

technologies (Table 18).  

 To understand the correlation in quantitative terms, the probability distribution of the results 

was investigated using the cumulative distribution function (CDF). A cumulative probability refers to the 

probability that the value of a random variable falls within a specified range, and indicates if the 

distribution is normal (Gabbiani and Cox, 2010). Results revealed that Lidar returns formed normal 

distribution with greater variance, where satellite measurements followed a skewed distribution and 

typically had smaller variance (Figures 28-31). For study purposes, profile of depths was plotted in Area 

#2 (2017) where Lidar returns were paired to satellite measurements using the QC algorithm. Because of 

higher concentration of turbidity, Lidar returns were scattered (measurement range=2.11 m) and 

produced greater standard deviation (19 cm), where SDB followed largely a linear depth representation 

(measurement range=0.24 m) with less significant standard deviation (SD=6 cm, Figure 32).  

Additionally, DEM maps were constructed, and they were compared to SDB of entire lagoon (20 m 

grid size, 2017) to Lidar bathymetry of the lagoon. Mean depth difference was 0.69 m, and standard 

deviation produced an acceptable 0.46 m (Figure 33). Especially in the south-eastern and north-western 
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parts, the SDB and ALB matched to each other, increasing confidence in the complementary use 

technologies where water quality was higher.  

 

Table 16: SDB analysis as generated by ENVI’s SPEAR algorithm. The depth range was the lowest in 2017 

due to tight thresholding with additional sonar measurements. The mean depth difference was less than 

5 cm for all years, which is an indicative of reliability with the SDB analysis.  

Imagery Minimum depth (m) Maximum 

depth (m) 

Depth range 

(m) 

Mean depth (m) Standard 

deviation (m) 

2016 0 -2.34 2.34 0.15 0.35 

2017 0.52 -1.58 2.10 0.15 0.39 

2018 0.53 -1.71 2.24 0.18 0.44 

2019 0 -2.54 2.54 0.20 0.46 

 

Table 17: Comparison of SDB analysis to ALB, in 2017. Area #3 was covered with clouds (N/A).  

Location Algorithm triangle (m)/ 

dZ tolerance (m)/ 

slope (degree) 

Algorithm 

match (%) 

Mean ALB 

(m) 

Mean SDB 

(m)  

Mean 

difference 

(m) 

RMSE 

(m) 

Area 1 5/1/45 59 0.83 0.89 -0.06 0.21 

Area 2 5/1/45 45 1.18 0.93 0.25 0.31 

Area 3 N/A 

 

Table 18: SDB accuracy comparison to Lidar bathymetry in survey Area#1. Overall depth discrepancy was 

low; however, high RMSE values indicated weak correlation. Survey area was shallow (< 1 m) and had 

relatively good water quality (mean turbidity=2.7 NTU).  

Imagery Algorithm triangle (m)/ 

dZ tolerance (m)/ 

slope (degree) 

Algorithm 

match (%) 

Mean ALB 

(m) 

Mean 

SDB (m)  

Mean 

difference 

(m) 

RMSE 

(m) 

2016 2/1/45 31 0.82 0.60 0.21 0.35 

2016 5/1/45 64 0.83 0.61 0.21 0.33 

2017 2/1/45 28 0.82 0.89 -0.07 0.22 

2017 5/1/45 59 0.83 0.89 -0.06 0.21 
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2018 2/1/45 28 0.82 0.72 0.10 0.24 

2018 5/1/45 58 0.83 0.72 0.11 0.24 

2019 2/1/45 26 0.80 0.89 -0.09 0.25 

2019 5/1/45 56 0.82 0.89 -0.07 0.23 

 

 

 
 

Figures 28 (a, b): Cumulative distribution of SDB versus ALB in 2016, in Area #1. Lidar measured deeper 

(mean difference=21 cm) and formed a normal distribution (SD= 0.22 m, σ2=0.046 m) compared to SDB 

results (SD=0.1 m, σ2=0.01 m).  

 
 

Figures 29 (a, b): SDB versus ALB in 2017, in Area #1. SDB measured deeper (mean difference=7 cm) and 

formed a skewed distribution (skewness = -1.45 m), where Lidar returns formed a normal distribution 

(skewness = -0.11 m). Figure 32 illustrates the linear form of SDB in this area. 
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Figures 30 (a, b): SDB versus ALB in 2018, in Area #1. Lidar measured deeper (mean=0.1 m), and 

measurements were scattered (SD=0.21 m). SDB were almost uniform (measurement range =0.14 m) 

and produced a skewed depth distribution (0.92 m).  

 

 
 

Figures 31 (a, b): SDB versus ALB in 2019, in Area #3. Overall, SDB produced deeper (mean 

discrepancy=0.09 m) and registered lower standard deviation (0.07 m). ALB formed a normal 

distribution with greater measurement range (2.1 m) compared to the SDB results (0.56 m).  
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Figure 32: ALB (blue, mean depth=1.18 m) versus SDB (brown, mean depth=0.93 m) in Area #2 (2017). 

Notice the scattered form of Lidar returns in the water column compared to the mostly uniform and 

linear structure of SDB.  
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Figure 33: Map of ALB versus SDB in 2017. The mean depth difference=0.69 m, and standard 

deviation=0.46 m. In the southeastern and the northern sections of the lagoon, water quality was 

higher, and the disparity was marginal (green areas).  
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h) SDB-based spatio-temporal analysis 

 

 In this study, SDB findings of Laguna Madre were analysed over a period of four years. Spatio-

temporal analysis is conducted by comparing the results of same metrics applied to different time 

periods, or temporal snapshots of the spatial data sets. For this purpose, SDB analysis of 2017 imagery 

was used as the benchmark and compared to the other SDB results produced by the SPEAR algorithm 

using Global Mapper v.20. Because of coarse grid sampling of Sentinel-2A NIR band, each pixel 

represented a 20 m surface. Table 19 presents the comparison findings, where the mean depth 

difference was less than 5 cm compared to 2017 depths. Because the difference was not substantial, it 

represented consistency with the morphologic variation of the lagoon over the years, and the 

robustness of SDB analysis with ENVI’s SPEAR algorithm. Figures 34-36 illustrate the distribution of pixel 

count differences of each year compared to 2017 depths. Figures 37 a-d present the analysis findings in 

map forms, where most differences appeared in lower water quality sections of the lagoon (southwest 

and central east).  

 

Table 19: SDB spatio-temporal analysis of Laguna Madre over a period of four years. Of all years 

compared to 2017 depths, the mean difference was less than 5 cm. 

 

 

 

Figure 34: 2016 to 2017, SDB 

differences (2016 minus 2017 depths) 

as calculated from Global Mapper v.20. 

Computations indicated the mean 

depth difference at 2 cm and standard 

deviation was 0.32 m. 91% of the 

differences occurred between -0.2 and 

0.1 m depths.  

 

Analysis Minimum 

difference (m) 

Maximum 

difference (m) 

Mean difference (m) Standard deviation 

(m) 

2016-2017 -2.34 1.42 -0.02 0.31 

2018-2017 -1.73 1.93 -0.03 0.29 

2019-2017 -2.73 1.42 -0.05 0.30 
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Figure 35: 2018 to 2017, SDB 

differences (2018 minus 2017 depths) 

as calculated from Global Mapper v.20. 

In the transparent sections of the 

lagoon, the depth difference was 

minimal; the mean depth difference 

was 3 cm and standard deviation was 

0.3 m. 94% of depth differences was 

less than 0.4 m.  

 

 

 

Figure 36: 2019 to 2017 satellite 

bathymetry differences (2019 minus 

2017 depths) as calculated using Global 

Mapper v.20.  Results revealed 

significant variations in the deeper 

sections of the lagoon (~ 6%, > 0.6 m). 
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(A) 2017 (B) 2016-2017 

(C) 2018-2017 (D) 2019-2017 
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Figures 37 a-d: Figures present the SDB analysis of Laguna Madre using ENVI’s SPEAR algorithm. Each 

year was compared to 2017 depths (Fig. 38-a). In 2016, comparison results revealed that 2017 SDB 

measured slightly deeper, where substantial change occurred in the northern section of the lagoon 

(marked with red). SDB did not produce significant depth differences in the central and southwest 

sections (Fig. 38-b). In 2018, the depth difference was minimal, where 94% of the differences were 

less than 4 cm (Fig. 39- c). In 2019, the lagoon sections with higher water quality (northeast and 

southwest) produced greater differences, where 6% of differences were deeper than 0.6 m (Fig. 38-

d).  

 

 

i) Lidar topography 

 

 BEG researchers output the entire NIR Lidar returns of hard and water surfaces in the survey 

area. NIR returns of water surfaces were filtered by examining and classifying the return amplitudes. 

However, because the lagoon was large and had fluctuating water quality, NIR return amplitudes from 

water surfaces varied greatly, causing irregularities with data output and respective classification. 

Particularly, excessive turbidity and very shallow depths increased the typical backscatter amplitude 

(water degrades the amplitude rapidly) and the amount of reflection from such surfaces. Therefore, 

with each vector data tile, manual editing was completed using Microstation v8i TerraScan application 

that were not classified correctly by the algorithm. Figure 38 presents the topographic surface heights in 

Laguna Madre, where more than half of the elevations (52.6%) registered between 0.94-2.4 m, 

therefore, we computed a mean elevation of 2.35 m. Only 0.3% of all heights measured were greater 

than 11.2 m. The NIR data analysis revealed hard surfaces below the mean sea level, particularly in the 

northeastern section where mud holes were evident; therefore, the minimum height threshold was set 

to -2 m.  

 To build DEMs of vector data sets, LASTools utility “lasgrid.exe” application was used with the 

“fill” parameter set to 2 and 3 meters (i.e., fill 2). This option enabled the filling of void areas within a 

square radius by interpolation and averaging of heights in the output raster file. However, because 

irregularities were evident in the data (e.g., Figure 39), BEG processed and included NIR DEMs of 

constructed by certain “fill” parameters. In the data delivery, unobstructed and unedited NIR data sets 

were included that may be beneficial to certain data analysts. Figure 40 presents the topographic map 

of hard surfaces surrounding the lagoon. 
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Figure 38: Topographic heights in Laguna Madre. Heights range from -2 m to 45 m.  

 

   

Figure 39: Visible NIR Lidar irregularities caused by 

the classification algorithm. Height interpolation 

and averaging method with neighbouring distance 

parameters were used to fill some of these void 

areas.  
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Figure 40: Topography of hard surfaces surrounding Laguna Madre. The mean elevation is 2.35 m with 

highest peaks reaching 45 m above the water surface.  
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5) Conclusions 

 In this study, BEG processed and analyzed previously acquired ALB data sets of Laguna Madre, 

and quantified the topographic heights and depth accuracies using other available survey technologies. 

The reflectance analysis was conducted to understand the surface properties and to classify the lagoon 

with regards to varying water quality. Results assisted to build masks to identify transparent sections of 

the lagoon, and to conduct further bathymetric analysis as applicable. ALB and SDB assessments 

identified the depth characteristics of the lagoon, and analysis of multiple years helped explore the 

temporal changes occurred in the lagoon. Further, depths were assessed whether the findings met or 

exceeded the established international hydrographic standards. 

 The study demonstrated that in such survey locations, depth measurements using remote 

sensing technology were influenced with environmental conditions and add complexity to building 

wholesome bathymetric maps. Overall, study revealed the following statements:    

• Application of quality control methods is fundamental to understand the height and depth 

accuracies produced by ALB prior to building DEMs or merging data sets acquired by different 

platforms.   

• Mapping with ALB has practical and theoretical limitations in large and dynamic shallow waters. 

The technology is effective and very detailed to measure depths; however, environmental 

conditions influence the results and the wholeness of the data sets.  

• Utilizing satellite imagery can be cost-effective and complementary method for shallow water 

mapping; however, the results can be skewed with varying depth and environmental conditions.  

• ALB is vastly detailed compared to satellite derived bathymetry. Coarse grid sampling of satellite 

bathymetry prevents comprehensive depth comparison between the technologies; however, 

results in this study indicated acceptable depth measurements particularly in transparent 

sections of the lagoon.  

 

 BEG recommends that future work in Laguna Madre should include the merging of ALB and 

multi-beam sonar data sets to build a comprehensive and a whole bathymetric map. Because sensing 

platforms and structure of data sets are fundamentally different, application of quality control methods 

is critical.  
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Appendix A - Data acquisition mission log 
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Figure A-1:  Sections A-F, illustrating the individual survey sections and duration of airborne campaigns 

in Laguna Madre. The survey area was fragmented into six sections for easier flight planning and data 

management purposes. 
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51
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R
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In
fo

  

2017-04-28 A N88N Aspen AA Matt, MB 11:44 13:48 2:04 Pt. Isabel A Varies 200 35 Calibration 

2017-04-30 A N88N Aspen AA Matt, MB 8:34 11:39 3:05 Pt. Isabel A, B 600 200 35 Survey 

2017-04-30 B N88N Aspen AA Matt, MB 13:10 15:31 2:21 Pt. Isabel A, B 600 200 35 Survey 

2017-04-30 C N88N Aspen AA Matt, MB 15:54 18:50 2:56 Pt. Isabel C, D 600 200 35 Survey 

2017-05-01 A N88N Aspen AA Matt, MB 9:23 13:08 3:45 Pt. Isabel B, D 400 300, 100 35 Survey 

2017-05-01 B N88N Aspen AA Matt, MB 14:20 17:45 3:25 Pt. Isabel D 400 100 35 Survey 

2017-05-02 A N88N Aspen AA Matt, MB 8:52 12:36 3:44 Pt. Isabel E 400 30 35 Survey 

2017-05-04 A N88N Aspen AA Matt, MB 8:30 11:08 2:38 Pt. Isabel E 400 300 35 Survey 

2017-05-04 B N88N Aspen AA Matt, Martin 12:21 15:39 3:18 Pt. Isabel E, D, B, C 400, 600 270 35 Survey 

2017-05-05 A N88N Aspen AA Matt, Rachel 8:58 12:06 3:08 Pt. Isabel D 400 100 35 Survey 

2017-05-05 B N88N Aspen AA Matt, Rachel 13:50 16:07 2:17 Pt. Isabel D 400 100 35 Survey 

2017-05-06 A N88N Aspen AA Matt, Rachel 8:38 11:17 2:39 Pt. Isabel B, D 400 100, 300 35 Survey 

2017-05-06 B N88N Aspen AA Matt, Rachel 12:55 14:20 1:25 Pt. Isabel B, D 400 300, 100 35 Survey 

2017-05-06 C N88N Aspen AA Matt, Rachel 5:10 8:30 3:20 Pt. Isabel B, D 400 300, 100 35 Survey 

2017-05-07 A N88N Aspen AA Matt, Rachel 9:52 13:12 3:20 Pt. Isabel B, D 400 300 35 Survey 

2017-05-07 B N88N Aspen AA Matt, Rachel 14:50 17:31 2:41 Pt. Isabel B, D 400 300 35 Survey 

2017-05-07 C N88N Aspen AA Matt, Rachel 18:17 21:06 2:49 Pt. Isabel B, D 400 300 35 Survey 

2017-05-08 A N88N Aspen AA Matt, Rachel 17:32 20:41 3:09 Pt. Isabel B, D 400 300 35 Survey 

2017-05-09 A N88N Aspen AA Matt, Rachel 11:36 15:05 3:29 Pt. Isabel B, D 400 300 35 Survey 

2017-05-09 B N88N Aspen AA Matt, Rachel 16:17 19:30 3:13 Pt. Isabel B, D, F 400 300 35 Survey 

2017-05-10 A N88N Aspen AA Matt, Rachel 9:58 13:30 3:32 Pt. Isabel C, F 400, 600 200, 300 35 Survey 

2017-05-10 B N88N Aspen AA Matt, Rachel 14:30 17:09 2:39 Pt. Isabel A, B, C 400, 600 200, 300 35 Survey 

2017-05-10 C N88N Aspen AA Matt, Rachel 17:45 19:22 1:37 Pt. Isabel C 600 200 35 Survey 

2017-05-11 A N88N Aspen AA Matt, Rachel 9:20 12:31 3:11 Pt. Isabel F 400 300 35 Survey 

2017-05-11 B N88N Aspen AA Matt, Rachel 13:30 16:30 3:00 Pt. Isabel F, C 400, 600 300, 195 35 Survey 

2017-05-12 A N88N Aspen AA Matt, Rachel 9:30 12:16 2:46 Pt. Isabel N/A N/A N/A N/A System 

malfunction 

2017-05-13 A N88N Aspen AA Matt, Rachel 12:15 15:29 3:14 Pt. Isabel D 400 295 35 Survey 

2017-05-13 B N88N Aspen AA Matt, Rachel 16:32 19:48 3:16 Pt. Isabel C, D 600, 400 200, 300 35 Survey 

2017-05-14 
 

N88N Aspen AA Matt, Rachel 8:45 11:33 2:48 Pt. Isabel B, D 400 300 35 Survey 

 

Abbreviations 

 

Aircraft ID: N88N   

ALB system operator: Aaron Averett (AA) 

Airborne campaign base airport: Port Isabel, TX 

HOBBS meter: Aircraft engine ON and OFF time.  

Pulse repetition rate (PRF): Lidar system pulse repetition speed (kHz) 
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Appendix B - Turbidity and localized sonar measurements 
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C
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-C
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0
 (

m
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2 2017-05-01 681989.95 2891306.11 0.60 0.70 0.61 0.64 VB  N/A 1.49 1.13 1.06  N/A  

3 2017-05-01 682546.59 2891234.73 2.21 2.49 2.81 2.50 VB 
 N/A 

1.85 1.83 1.08 2.16 

4 2017-05-01 681723.88 2891259.92 2.10 2.02 2.01 2.04 VB 
 N/A 

1.26 1.29 1.34 1.53 

5 2017-05-01 680939.15 2891230.51 2.38 2.99 2.79 2.72 VB 
 N/A 

1.38 1.38 1.42 1.50 

6 2017-05-01 681101.49 2890944.68 1.60 1.81 1.99 1.80 VB 
 N/A 

1.35 1.38 1.40 1.47 

7 2017-05-01 681434.53 2890731.42 1.90 2.16 2.24 2.10 VB 
 N/A 

1.38 1.30 1.23 1.41 

8 2017-05-01 681985.00 2890432.00 2.82 3.70 4.55 3.69 VB 
 N/A 

1.33 1.33 1.37 1.47 

9 2017-05-01 682282.75 2890039.69 2.81 3.18 3.26 3.08 VB 
 N/A 

 N/A 1.27 1.34 1.59 

10 2017-05-01 681075.64 2889328.48 1.75 1.52 1.99 1.75 VB 
 N/A 

1.19 1.22 1.11 1.40 

11 2017-05-01 680624.58 2888914.09 3.36 3.62 4.10 3.69 VB 
 N/A 

1.28 1.33 0.05  N/A 

12 2017-05-01 680311.53 2889005.78 4.64 5.26 5.68 5.19 VB 
 N/A 

1.45 1.44 1.44 1.63 

13 2017-05-05 678831.78 2894403.48 1.31 1.51 1.59 1.47 VB 
 N/A 

1.28 1.25 1.37  N/A  

14 2017-05-05 678364.02 2894849.48 1.34 1.82 1.81 1.66 VB 
 N/A 

1.19 1.21 1.35 1.38 

15 2017-05-05 677943.08 2895043.14 2.79 2.93 3.39 3.04 VB 
 N/A 

1.23 1.23 1.13  N/A  

16 2017-05-05 677471.31 2895420.79 3.66 7.90 8.02 6.53 VB 
 N/A 

1.40 1.40 1.49 1.63 

17 2017-05-05 677293.56 2895990.83 3.78 11.50 12.20 9.16 VB 
 N/A 

1.26 1.42 
 N/A 

1.85 

18 2017-05-05 676829.28 2896189.47 15.90 17.30 19.30 17.50 0.6 2.67 1.61 1.63 
 N/A 

2.17 

19 2017-05-05 677032.68 2897036.17 10.20 15.50 16.40 14.03 0.7 2.29 1.52 1.53 
 N/A 

1.97 

20 2017-05-05 677611.28 2897369.09 7.57 9.04 11.00 9.20 0.85 1.88 1.38 1.35 1.54 1.22 

21 2017-05-05 677341.54 2898209.33 4.27 4.95 5.52 4.91 VB   N/A 1.45 1.41 1.67 1.72 

22 2017-05-05 676915.17 2897588.56 8.69 11.50 12.30 10.83 0.7 2.29 1.57 1.54 1.27 1.59 

23 2017-05-05 677020.09 2896493.08 10.50 12.80 12.70 12.00 0.9 1.78 1.57 1.57 
 N/A 

2.58 

24 2017-05-05 676501.32 2895309.69 14.00 18.90 19.70 17.53 0.8 2.00 1.66 1.67 
 N/A 

 N/A  

25 2017-05-05 677336.30 2894813.24 3.85 3.43 3.90 3.73 VB   N/A 1.42 1.42 1.51 1.73 

26 2017-05-12 672597.73 2888097.92 11.10 15.70 16.70 14.50 0.7 2.29 1.83 1.79  N/A 1.96 

27 2017-05-12 673745.52 2887921.14 11.10 17.10 21.70 16.63 0.7 2.29 1.97 1.97 
 N/A 

2.04 

28 2017-05-12 674964.06 2887817.43 9.48 13.50 16.10 13.03 0.7 2.29 1.90 1.90 
 N/A  N/A 

29 2017-05-12 676179.75 2887926.15 8.91 11.90 12.10 10.97 0.85 1.88 2.13 2.15 
 N/A  N/A 

30 2017-05-12 676968.38 2888786.30 3.12 4.00 5.05 4.06 1.3 1.23 1.52 1.51 1.25 1.45 

31 2017-05-12 675270.36 2888720.85 9.03 15.80 19.00 14.61 0.7 2.29 1.92 1.94 
 N/A 

  N/A 

32 2017-05-12 674052.80 2888881.79 10.80 13.40 13.20 12.47 0.8 2.00 2.02 2.01 
 N/A 

1.86 

33 2017-05-12 674961.02 2889283.61 15.20 15.00 16.50 15.57 0.75 2.13 2.06 2.02 
 N/A 

  N/A 

34 2017-05-12 676290.01 2889264.61 5.44 8.22 9.33 7.66 1 1.60 1.90 1.89 
 N/A 

2.61 

35 2017-05-12 676841.89 2889261.02 1.80 2.80 3.09 2.56 VB 
 N/A 

1.59 1.55 1.33 1.51 

36 2017-05-12 677419.18 2889228.25 2.47 3.33 4.08 3.29 VB 
 N/A 

1.59 1.54 1.33 1.48 
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Abbreviations 

UTM E: Universal Transverse Mercator – Easting (m) 

UTM N: Universal Transverse Mercator – Northing (m) 

Avg. NTU: Average measured turbidity in nephelometric turbidity unit 

Secchi: Observed Secchi disk depth (m) 

Kd: Diffuse attenuation coefficient   

VB: Water bottom is visible to the observer 

WP: Waypoint location marked for a sonar measurement  

Avg. sonar depth: Average depth of all sonar measurements in 1-m radius 

CL0: Class 0, surface, NIR + green wavelength, vector data 

CL7: Class 7, bottom, green wavelength, standard bathymetric algorithm, vector data 

CL10: Class 10, bottom, green wavelength, enhanced bathymetric algorithm, vector data 
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Appendix C - Reflectance  
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Figure C-1: Surface reflectance as recorded by 05/12/2016 Sentinel-2A L1C Band 5, classified using ENVI 

v5.5 Spectral Profile Tool. The northern and southern sections of the lagoon recorded lower reflectivity, 

corresponding to higher water quality.  
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Figure C-2: Surface reflectance as recorded by 06/16/2017 Sentinel-2A L1C Band 5, classified using ENVI 

v5.5 Spectral Profile Tool. Water quality has decreased in the southwest and in the eastern parts of the 

lagoon, compared to the previous year.  
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Figure C-3: Surface reflectance as recorded by 17/05/2018 Sentinel-2A L1C Band 5, classified using ENVI 

v5.5 Spectral Profile Tool. Water quality has increased substantially in the northern parts of the of the 

lagoon.   
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Figure C-4: Surface reflectance as recorded by 27/05/2019 Sentinel-2A L1C Band 5, classified using ENVI 

v5.5 Spectral Profile Tool. Lagoon water quality has increased, however, there were large areas in the 

southwest and in the east with high reflectance, corresponding to lower water quality.  
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Appendix D – Satellite derived bathymetry  
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Figure D-1: SDB of Laguna Madre as derived from 05/12/2016 Sentinel-2A L1C imagery. The deepest 

location measured was 2.34 m.  
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Figure D-2: SDB of Laguna Madre as derived from 16/06/2017 Sentinel-2A L1C imagery. The deepest 

area was 1.58 m, and the depth range was calculated at 2.1 m.  
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Figure D-3: SDB of Laguna Madre as derived from 17/05/2018 Sentinel-2A L1C imagery. Analysis 

indicated 1.71 m as the deepest, and depth range was 2.24 m. 
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Figure D-4: SDB of Laguna Madre as derived from 27/05/2019 Sentinel-2A L1C imagery. The depth range 

and the maximum depth was 2.54 m.  




